
A UVM Multi-Agent Verification IP

architecture to enable Next-Gen protocols

with enhanced reusability, controllability

and observability
Prathik R1 Ramesh Madatha2 Girish Kumar Gupta3 Tony Gladvin George4

1Samsung Semiconductor India, Bengaluru, India, prathik.r@samsung.com; 2Samsung Semiconductor

India, Bengaluru, India, ramesh.mr@samsung.com; 3Samsung Semiconductor India, Bengaluru, India,

g.girish@samsung.com; 4Samsung Electronics, Korea, tony.gg@samsung.com

Abstract – This paper introduces a multi-agent Verification IP (VIP) architecture tailored for next-generation, high-

speed data transfer protocols. Employing UVM, the architecture addresses the complexity inherent in layered protocol

subsystems by decentralizing the verification process across multiple UVM agents. This design enhances granularity

in verification, yielding improvements in reusability, controllability, and observability. The use of protocol-

configurable agents facilitates dynamic stimulus generation and timely observation, ensuring backward compatibility

and reducing development cycles. Key to this architecture is the synchronization mechanism across agents, which

allows the handling of multi-protocol traffic, which is crucial for the verification of complex multiplexed protocols such

as CXL and PCIe6.0. The introduction of debug interfaces provides real-time, protocol-aware state pattern visibility,

drastically improving debug efficiency. Results demonstrate a 35% reduction in VIP development time and a 50%

improvement in issue resolution turnaround. This architecture not only streamlines the validation of existing protocols

but is also agile enough to accommodate the evolution of future protocol standards.

I. Introduction

As high-speed computation and data transfers rise, layered protocol subsystems become increasingly prominent.

Verification IP (VIP) plays a crucial role in verifying these protocols, where the complexity of the test

environment grows proportionally with the complexity of the design under verification. Traditional VIP

development, centered around controllability and observability, might fall short with next-gen, layered, and

multiplexed protocols. This makes us think of an approach to scale the VIP horizontally along with the reusable

standards to minimize the development cycle and look for ways to enhance reusability, controllability and

observability of a VIP. In this paper, we would like to propose a solution to develop a reusable VIP that accounts

to scale for next-gen multiplexed protocols with enhanced controllability and observability.

II. Problem Statement

Next-gen protocols introduce a hybrid architecture with complex structures involving multiple layers, arbiter and

multiplexer. The UVM-based VIPs, targeting single protocol [3], face challenges to scale to the next-gen

multiplexed protocols and requires high re-usability, backward compatibility and an ability to accommodate the

intricate nature of layered information transfers. As shown in Fig.1, we can see that the next-gen multiplexed

protocols have multiple components, where each combined vertically defines a single protocol semantics.

Figure.1 Example of next-gen multiplexed protocols

Configuration of (1) Next-gen multiplexed protocols often involve multiple protocol packets being transmitted

simultaneously. For example, CXL supports CXL.io and CXL.mem/cache protocols in parallel, requires

synchronization across protocols/applications with arbitration and multiplexing. (2) Few protocols require a

change in mode of operation for the demand in its application. For example, PCIe6.0 compared to previous

generation, supports FLIT mode (FM) of operation and need backward compatibility to Non-FLIT mode (NFM)

operation and does not require arbitration and multiplexing as seen for CXL. The complex architecture and

requirements of these protocols can limit the expansion of functionality within a single UVM agent and pose a

challenge in scaling bus functional models. The layer based modular implementation alone doesn’t help in scaling

the functionality as agents becomes bulky and difficult to maintain. Also with limited observability and

configurability for such complex protocol models, visualizing and controlling the data transformations at each

layer become tedious.

III. Proposed Architecture

In Fig.2, the proposed architecture for next-gen multiplexed protocols is to model the VIP with parallel multi-

agent stacks to target different protocols, along with arbiter and multiplexer layer to control the stimulus flow

across agents. This synchronized multi-agent approach ensures better dynamic controllability along with

observability by having debug interfaces at each layer to visualize the stimulus transformation

Figure.2 Multi-agent modeling for next-gen multiplexed protocols

Configuration controlled multi-agents: Common configurations with the feedback on negotiated modes/features

would provide a better dynamic controllability for virtual sequencing [2] in application layer. These configuration

objects shared across agents, help to maintain the backward compatibility and synchronization between agents.

Protocol and state pattern mapped debug interfaces: Each debug interface of an agent containing multiple System

Verilog structures [1] would help to visualize the data/control packets, events and state pattern information [3] of

every protocol layer. This will aid an engineer to debug the scenario by observing the VIP’s state and stimulus

flow across multiple agents and layers in waveforms.

Salient features in proposed VIPs architecture targeted for multiplexed Next-Gen protocols:

1. Configurability – To address the aforesaid problem of configurations to support multiple protocol packet

formats integrated in a common VIP, this architecture enables multi-protocol support over single serial

interface. Layered agents are re-used with protocol multiplexing to provide a provision for enabling next-

gen or to maintain the legacy usage based upon the intent of verification.

2. Controllability – Common configuration object that is passed across layer will control protocol features

during run time, ensures better functional reusability and helps in vertical expansion of VIP.

3. Synchronization – Across Multi-agents;

a. similar and interdependent set of configurations are effectively utilized to enable/disable a transaction

path, ensures backward compatibility.

b. arbitrating and multiplexing transactions generated across parallel protocols, helps to maintain

synchronization across the multi-agent architecture.

4. Observability/Debug-ability – System Verilog structure [1] based event monitoring on debug interface to

track the state pattern along with the protocol information for better visibility.

IV. Details of configuration controlled multi-agents

In every revision of layered protocols, each layer will have a set of features which may be newly added or

enhanced from the previous version. The extension of features from one generation to another demands the need

for backward compatibility. Similarly, in the development of VIP, all features supported has to be included in a

configuration class. In order to enhance the VIP for subsequent versions, configuration classes have to be extended

to indicate the support of a feature. In Fig.3, it is shown that the layer specific features are grouped into a

configuration class and passed down to each UVM agent. The operation of a layer is controlled by the class based

configuration, which helps in the modular approach of coding and also helps to ease the backward compatibility.

Figure.3 Feature configurations to control the multi-agents

Figure.4 Creation and assigning common configuration

From Fig.4, common configuration class created in the UVM environment, hold variables to control the flow of

transaction which are enabled/disabled dynamically. Configuration object handles are passed down to all the

agents and also to the virtual sequencer. Layers responsible to enable a feature that effect overall transaction path

is based upon the negotiation with link partners. A feedback mechanism established to the top layers and virtual

sequencer, provides control on initiating sequences on appropriate sequencer. Similarly, helps other layers to

function as per the negotiated mode of operation.

From Fig.5, we can consider the following two cases on mode negotiation between the link partners.

Case1: PCIe Flit & Non-Flit Mode

The negotiated mode in the Physical Layer (PL) decides the FM or NFM operation for PCIe/CXL IO and helps

sequence developer to decide the type of transactions to be driven either on to FM agent or NFM agent. Thus the

control between agents is established by the use of common configuration object, a simple approach of handle

assignment helps to model a feedback mechanism to decide on the dynamic adaptability of the VIP.

Figure.5 Example to demonstrate the feedback in VIP for PCIe and CXL

Case2: CXL Mode

If the negotiated mode is CXL, we need to activate the arbiter and multiplexer agent and the associated layer

specific feature configuration object will decide the arbitration scheme. Here two agents mapped to different

protocols would be active in parallel and different traffic to pass to lower layer has to be arbitrated and multiplexed.

The arbiter agent ensures synchronization between parallel agents, leading to a vertical expansion of VIP. In non

CXL mode, the arbiter and multiplexer agent would pass through the incoming transaction without any

modification.

Fig.6, provides an example of the common configuration class that holds the variables to indicate the mode of

operation which gets programmed dynamically during the runtime.

Figure.6 Common configuration class code snippet

In Fig.7, the creation of the object for common configurations is done in the UVM environment and the objects

handle is passed to all the required agents. Since the object is created once and an agent is responsible to update

the mode of operation by setting the values, and these configurations would be seen by other agents. The handle

of common configuration object passed down the hierarchy, helps to maintain the synchronization between the

agents and to control the sequencing.

Figure.7 VIP environment code snippet

In Fig.8, the lower layer (PL) provides the feedback on the mode of operation decided between the link partners

by updating the features in the common configuration class object.

Figure.8 PL to decide and update the configuration code snippet

//Common configuration class

class vip_common_config extends uvm_object;

 //Variables to hold the configurations to be shared across layers
 bit flit_mode_en;

 bit non_flit_mode_en;

 bit cxl_mode;

 `uvm_object_utils_begin(vip_common_config)

 `uvm_field_int(flit_mode_en,UVM_ALL_ON)

 `uvm_field_int(non_flit_mode_en,UVM_ALL_ON)
 `uvm_field_int(cxl_mode,UVM_ALL_ON)

 `uvm_object_utils_end

endclass

//VIP environment to create and pass the handle of config class

class vip_env extends uvm_env;

 `uvm_object_utils(vip_env)

 //Create all layer agents

 //Create the vip_configuration and pass to all layers and virtual sequencer

 i_common_cfg = vip_common_config::type_id::create("i_common_cfg");

 vip_virtual_sqr.i_common_cfg = i_common_cfg;

 uvm_config_db#(vip_common_config)::set(this,"i_nfm_tl_agent.*","vip_common_config",i_common_cfg);

 uvm_config_db#(vip_common_config)::set(this,"i_fm_tl_agent.*","vip_common_config",i_common_cfg);

 uvm_config_db#(vip_common_config)::set(this,"i_cxl_mem_agent.*","vip_common_config",i_common_cfg);

 //So on for all agents (layers)

 .

 .

 .

 .

endclass

//PL Agent to negotiate and updates the mode

class vip_pl_ltssm extends vip_pl_state;

 `uvm_object_utils(vip_pl_ltssm)

 //State to negotiate PCIe Flit Mode or CXL

 //Update the vip_common_config

 i_common_cfg.flit_mode_en = 1;

 i_common_cfg.non_flit_mode_en = 0;

 i_common_cfg.cxl_mode = 0;

endclass

Fig.9, demonstrates that VIP developer can make use of the common configuration object in virtual sequence to

have a smart way of sequencing, which assures reuse and aids to create a multi-level abstraction in tests and VIP

in itself would act as a self-configurable verification environment.

Figure.9 Virtual sequence code snippet for multi-agent controllability

In Fig.10 and Fig.11, code snippets for arbitration and multiplexing is captured. This would help to explain how

multiple modes of operation controls the behavior of an agent and maintains the synchronization between the

agents carrying different types of transaction.

Figure.10 Arbitration and Multiplexer agent code snippet

Figure.11 Arbiter and Multiplexer driver code snippet

//Virtual sequence using the common configuration updates to decide the mode of operation

class vip_virtual_sequence extends uvm_sequence;

 `uvm_object_utils(vip_virtual_sequence)

 //Common object is declared and the handle is assigned in virtual sequencer

 `uvm_declare_p_sequencer(vip_virtual_sqr)

 //Access the common configuration variable from virtual sequencer to decide on the agent (FM or NFM)

 if(p_sequencer.i_common_cfg.flit_mode_en ==1) begin

 //start Flit Mode Sequences

 end

 else if(p_sequencer.i_common_cfg.non_flit_mode_en ==1) begin

 //Non-Flit Mode is enabled, starts Non-Flit Mode Sequences.

 end

 else if(p_sequencer.i_common_cfg.cxl_mode == 1) begin

 //start CXL related sequences

 end

 else begin

 //Default condition: Generally, an erroneous configuration

 end

endclass

class vip_arb_mux_agent extends uvm_agent;

 //TLMs to get transactions from DL and to send to PL (Tx)

 uvm_blocking_put_port#(vip_dl_DL_to_PL_packet) AM_to_PL_send_req_put;

 uvm_blocking_get_port#(vip_io_flit_packet) IO_DL_to_AM_req_get;

 uvm_blocking_get_port#(vip_io_flit_packet) MEM_DL_to_AM_req_get;

 vip_common_config common_cfg;

 vip_arb_mux_driver i_am_driver;

 //Get the common config handle

 `uvm_object_utils(vip_arb_mux_agent)

 virtual function void connect_phase(uvm phase);

 if(i_common_cfg.cxl_en) begin

 //Connect AM with CXL.cache/mem agents

 end

 else begin

 //pass the DL transaction to PL

 end

 endfunction

endclass

class vip_arb_mux_driver extends uvm_component;

 `uvm_object_utils(vip_arb_mux_driver)

 //Get the common config from the config db

 virtual task run_phase(uvm_phase phase);

 //States to fetch and store IO (PCIe)

 if(i_common_cfg.cxl_mode)

 //States to fetch and store cache/mem

 //States to arbitrate and drive depending upon the mode

 endtask

endclass

If the negotiated mode is not CXL, then the arbiter agent will act as a pass through, similar to a wire to pass the

incoming transactions. If the negotiated mode is CXL, then the weighted round robin arbitration logics decides

which transaction to pass. The weight for the arbitration is decided by the value configured in agent specific

feature configuration object.

V. Details of protocol and state pattern mapped debug interfaces

In the multiplexed protocol, there are several events happening in the VIP related to protocols and to the

architected flow of the VIP. Along with the logs, the visual realization of the transaction flow helps for faster

debug and also helps to relate to the test scenarios. As shown in Fig.12, a separate interface for debugging is used

to map the protocol and VIP state pattern events.

Figure.12 Protocol/state pattern mapping on to interfaces

For example, PL has LTSSM and every state transitions are mapped to the debug interface similarly we see state

machines in arbitration and multiplexing called the vLSM. DL has Data Link Control Management State Machine

(DLCMSM), every state and relevant data mapping in the state helps the end-user to visualize the protocol

transaction flow.

Figure.13 Debug interface code snippet

//Types of ENUM to represent states in ASCII

typedef ltssm_state_e = {POL, CFG, RECV, L0};

typedef dlcmsm_e = {IDLE, INIT, ACTIVE};

typedef tl_state_e = {form_tlp, drive_tlp, cred_updt};

//Interface definition

interface vip_debug_intf;

 ltssm_state_e i_ltssm_state;

 dlcmsm_e i_dlcmsm_state;

 tl_state_e i_tl_state_pattern;

endinterface

//Example of event generation for state map

class dlcmsm_active_state extends dlcmsm_state;

 //Trigger the event

 dl_active_state_change;

endclass

//Logic to map the state on to interface

//Interface is passed to the agents

class dl_driver extends uvm_component;

 //run_phase

 virtual task run_phase (uvm_phase phase);

 //forever loop to block on to the event and update

 forever begin

 @(dl_active_state_change)

 vip_dbg_intf.i_dlcmsm_state = ACTIVE;

 end

 endtask

endclass

VI. Results & Conclusion

Feature configuration based agents help in backward compatibility and reduces the VIP development cycle by

approximately 35%. Also, validation of older generation products can be completed without any efforts involved

to change the legacy tests which ensures timely verification closure. Dynamic feedback approach with common

configuration, makes the newly developed sequences very modular and supports complex stimulus generation

capabilities. This helped in covering large state space, increasing quality and quantity of functional coverage

approximately by 40%. Debug interfaces reduces the issues debug turnaround time approximately by 50% as the

root cause analysis would be faster with the enhanced debug capability. The proposed multi-agent architecture

promises enhanced configurability, controllability and observability, offering a significant evolution in VIP

development for complex multiplexed protocols.

Table.1 Statistics of traditional vs proposed approach

Features Traditional Proposed Gain/Loss

VIP Development time 6 months 4 months 33%

Issue Resolution (TAT) 2 days 1 day 50%

Test Development 1 month 3 weeks 25%

Validation 5 months 4 months 20%

Coverage 2 months 5 weeks 40%

References

[1] System Verilog 3.1a Language Reference Manual, Accellera Organization, Inc.pp. 321-335

[2] UVM Cookbook, Verification academy, Mentor Graphics

[3] Tony Gladvin George, Girish Kumar Gupta, Hojun Shim, ByungChul Yoo, “UVM Layering for Protocol

Modelling Using State Pattern”, Samsung Semiconductor.

[4] Ahmed Kamal, “Reusable Extension Layer for UVM to Simplify Functional Modeling”, Mentor.

[5] Rahul Chauhan, Grupreet Kaire, Ravindra Ganti, Subhranil Deb, “Layering Protocol verification: A

Pragmatic Approach Using UVM”, SNUG 2014. Verilog 1800-2012”, DVCon 2016.

[6] Tom Fitzpatrick, “Layering in UVM”, Verification Horizons

