
A UVM Multi-Agent Verification IP
architecture to enable Next-Gen protocols
with enhanced reusability, controllability

and observability

1

Prathik R – Samsung Semiconductor India R&D, Bangalore
Ramesh Madatha – Samsung Semiconductor India R&D, Bangalore

Girish Gupta – Samsung Semiconductor India R&D, Bangalore
Tony George – Samsung Semiconductor, Inc.

2

1. Next Gen Multiplexed Protocols and Verification
2. Proposed Architecture using Multi-Agents
3. Configurability of the Multi-Agent
4. Synchronization between the Multiplexed Protocols
5. Debug-ability of the Data/Control Flow in the VIP
6. Observation & Results
7. Conclusion

Agenda

Next Gen Multiplexed Protocols and Verification

What are next gen multiplexed protocols?

Transfer multiple types of semantics
 By transforming the type of semantic based

upon the generation (Ex: PCIe6.0)

 Or, transfer different semantics in parallel (CXL)

A layer to maintain the synchronization of
traffic via multiplexing and arbitration

Verification requirements:

Ability to dynamically decide on,
 Type of semantics to be transferred

 Need of parallel layers

 Synchronize the parallel traffic

Application Logic Layer

Higher
Protocol Layer

Higher
Protocol Layer

Higher
Protocol Layer

Middle
Protocol Layer

Middle
Protocol Layer

Middle
Protocol Layer

Arbiter and Multiplexer Layer

Lower Protocol Layer

Common Physical Layer Agent

Non-Flit Mode
Agent Sequencer

Flit Mode Agent
Sequencer

Non-Flit Mode
Agent

Flit Mode Agent

Non-Flit/Flit/CXL
Mode update

Tx Rx

CXL io & mem Arbiter/Multiplexer Agent

C
O
M
M
O
N

C
O
N
F
I
G

PCIe/CXL IO

Tx

CXL.mem.TL Agent

CXL.mem Agent
Sequencer

CXL.mem.DL Agent

CXL Mode Select

Rx

Tx

Tx Rx

Rx

C
X
L

M
E
M

P
A
T
H

CXL MEM

Non-Flit/Flit Mode Select

Tx Rx

Tx Rx

Flit Mode Agent

Tx Rx

Flit Mode Agent

Flit Mode Agent
Sequencer

F
L
I
T

M
O
D
E

Data Link Layer

Transport Layer

Virtual Sequencer

ARBMUX

Tx Rx

Tx Rx

Non-Flit Mode
Agent

Tx Rx

Non-Flit Mode
Agent

Non-Flit Mode
Agent Sequencer N

O
N

F
L
I
T

M
O
D
E

Proposed Architecture using Multi-Agents

Uvm_Agents of Physical Layer
Config_Handle()

Uvm_Agents of Data Link Layer
Config_Handle()

Uvm_Agents of Transaction Layer
Config_Handle()

UVM VIP Environment

Multi-Agent
Controlling

Configuration
Object

(Common
configuration)

Configurability of the Multi-Agents

• Lower Layer Agent updates the negotiated

mode in the common configuration

object

• Other Layer Agents can see the updates

and control the flow of operation

• One single Object is shared across all the

layers In-order to reflect the common

configuration dynamically

Code Snippet : Configuration Class

6

//Common configuration class

class vip_common_config extends uvm_object;

//Variables to hold the configurations to be shared across

layers

bit flit_mode_en;

bit non_flit_mode_en;

bit cxl_mode;

`uvm_object_utils_begin(vip_common_config)

`uvm_field_int(flit_mode_en,UVM_ALL_ON)

`uvm_field_int(non_flit_mode_en,UVM_ALL_ON)

`uvm_field_int(cxl_mode,UVM_ALL_ON)

`uvm_object_utils_end

endclass

Modes to

configure the

state

functionality

Code Snippet : Provision for dynamic configurability

7

//VIP environment to create and pass the handle of config class

class vip_env extends uvm_env;

`uvm_object_utils(vip_env)

//Create all layer agents

//Create the vip_configuration and pass to all layers and

virtual sequencer

i_common_cfg =

vip_common_config::type_id::create("i_common_cfg");

vip_virtual_sqr.i_common_cfg = i_common_cfg;

uvm_config_db#(vip_common_config)::set(this,"i_nfm_tl_agent.*",

"vip_common_config",i_common_cfg);

uvm_config_db#(vip_common_config)::set(this,"i_fm_tl_agent.*","

vip_common_config",i_common_cfg);

uvm_config_db#(vip_common_config)::set(this,"i_cxl_mem_agent.*"

,"vip_common_config",i_common_cfg);

//So on for all agents (layers)

………………..

endclass

Creating

common

configuration

object

Passing the

handle to all

agents and

sequencer

Protocol
Events

Map Virtual
Interface
Signals

UVM VIP Agent of Any Layer
Waveform View of all VIP

Transactions/Packets
Effective Debug of UVM

Environment
For a complex VIP

Architectures

Monitor

Debug-ability of the Data/Control Flow in the VIP

• Debug Interface enables the user to visualize the flow of packets in waveform
and is an effective way of debugging the complex architectures and simple to develop

Code Snippet : Debug interface

9

//Types of ENUM to represent states in ASCII

typedef ltssm_state_e = {POL, CFG, RECV, L0};

typedef dlcmsm_e = {IDLE, INIT, ACTIVE};

typedef tl_state_e = {form_tlp, drive_tlp, cred_updt};

//Interface definition

interface vip_debug_intf;

ltssm_state_e i_ltssm_state;

dlcmsm_e i_dlcmsm_state;

tl_state_e i_tl_state_pattern;

endinterface

//Example of event generation for state map

class dlcmsm_active_state extends dlcmsm_state;

//Trigger the event

dl_active_state_change;

endclass

//Logic to map the state on to interface

//Interface is passed to the agents

class dl_driver extends uvm_component;

//run_phase

virtual task run_phase (uvm_phase phase);

//forever loop to block on to the event and update

forever begin

@(dl_active_state_change)

vip_dbg_intf.i_dlcmsm_state = ACTIVE;

end

endtask

endclass

Interface to

track the

internal events

Observation & Results

10

Features Traditional Proposed Gain/Loss

VIP Development time 6 months 4 months 33%

Issue Resolution (TAT) 2 days 1 day 50%

Test Development 1 month 3 weeks 25%

Validation 5 months 4 months 20%

Coverage 2 months 5 weeks 40%

Conclusion

• The motivation for this paper is to analyze and conclude on a
Verification IP Architecture which provides full-fledged control
without compromising on the simplicity of model development.

• Dynamically modifiable functionality of all layers along with complex
test scenario generation is achieved using this methodology.

• The proposed architecture has been deployed for live verification
project on PCIe6.0 and CXL2.0 protocols.

11

Thank You

12

