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Abstract—The simulation based constrained random coverage driven functional verification is one of the most prevalent 

paradigms used on RTL designs today. While greatly enhancing the verification process, reaching full functional coverage, a 

necessary step for verification closure, remains a bottleneck. This is mainly due to the necessary manual intervention in the process, 

consisting of the verification team adjusting stimulus randomization constraints and developing directed tests. This paper tackles 

this issue by exploring the use and integration of a deep reinforcement learning engine in such a verification environment. Specifically, 

the technique demonstrated here is a deep learning approach to a Q-Learning variant named Deep Q-Networks, a similar approach 

to the one developed in the work of DeepMind Technologies to play Atari games [1]. The method is adapted to fit seamlessly into a 

constrained random coverage driven functional verification environment. The solution development stages along with the simulation 

results are detailed in this paper. We conclude by making suggestions on which designs may be good candidates for this novel 

technique. 
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I. INTRODUCTION 

There have been several endeavors aiming at using ML algorithms for the purpose of optimizing one stage or another of the 

digital design verification process, see for example [2, 3]. An exhaustive review presenting various ML based techniques, like 

data mining or inductive logic programming, aiming at generating tests based on the analysis of the simulation coverage data, 

using supervised learning, has been conducted in [4]. In this paper, we specifically focus on functional coverage closure and 

reinforcement learning. Reinforcement learning has recently been used in a variety of applications [5] and here we present a 

deep reinforcement learning based technique that automatically generates stimulus on-the-fly, based on the functional coverage 

scores achieved during the simulation of an RTL design. We emphasize here that conceptually, RL algorithms are different 

from supervised learning ones, as the training data for RL algorithms is generated on-the-fly as an inherent part of the learning 

process itself. This is further discussed in section V. 

The parallel in core concepts between RTL verification and reinforcement learning is first clarified along with the role and 

the integration of a reinforcement learning agent in a modern SystemVerilog based verification environment. The design used 

in this experiment is an LZW compression encoder written in SystemVerilog RTL. This design is on one hand sufficiently 

complex to be representative of a typical RTL verification process, and on the other hand, it allows for an unambiguous 

assessment of the approach's benefits for closing functional coverage. We then present a solution for co-simulating efficiently 

our deep reinforcement learning agent coded in Python PyTorch and the rest of the verification environment written in 

SystemVerilog. The deep Q-Learning agent itself, implemented as a DQN, is presented in the section that follows. We report 

the results of our co-simulations on the LZW compression encoder and show that the use and integration of the deep Q-Learning 

based technique is efficient in automating the generation of test scenarios in the form of transactions and sequences of 

transactions that are necessary to hit the most tenacious functional coverage bins of the design, paving the way towards 

verification closure. 

II. RTL VERIFICATION AND REINFORCEMENT LEARNING  

An RL system can be thought of as a sequential decision-making process where information between the RL agent and the 

RL environment is exchanged: at every timestep T, the RL agent executes an action AT on the RL environment. AT itself, is a 

function of the RL environment current state ST and the reward RT , which is a scalar value, both obtained from the previous 

RL agent action AT-1 [6]. AT brings the RL environment to a new state ST+1 and a new reward value RT+1. This data is used by 

the RL agent to learn what subsequent actions shall be selected, in the next timesteps, with the constant objective to maximize 

the expected future reward as received by the RL environment. The learning process as executed by the RL agent can either 

estimate a policy function π, which is a direct mapping of an RL environment state to an action, or of a value function. A value 

function, given a specific policy function π, returns the expected reward of being in a state and taking actions according to π. 

We focus in this paper on a special value function called the action-value function: 
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Qπ(S,A) -> E(R|A,S, π) 

 
Formula 1: Action-value function 

 

In words, given a policy π, this function accepts a state and an action and returns the expected reward of being in that state and 

taking this action [7, 8]. 

We now transfer to the RTL verification realm, where we specifically focus on the functional coverage closure problem. 

Firstly, digital simulation can be described as a sequential process which generates a series of input transactions at different 

timesteps. These input transactions are driven sequentially through a design under test (DUT) and are processed by the DUT. 

The DUT generates output transactions in return.  

The subsequent generation of stimulus, in the form of input transactions to the DUT can be made dependent on these output 

transactions, or any other effect the previous input transactions had on the design. Therefore, digital simulation can be described 

as a sequential decision process similarly to an RL system. 

 We now apply the following translations regarding the RL problem concepts. We first consider a typical modern testbench 

(TB) as depicted in Figure 1 by focusing on the entities represented by rounded corners rectangles. 

 

 
 

Figure 1: The RL agent and RL environment in a typical test bench 

An intelligent test bench entity responsible for generating new stimulus is transformed into our RL agent. The DUT along 

with the non-stimulus test bench entities form the RL environment. The RL agent generates and drives input transactions to the 

RL environment. These are its actions. The RL environment generates on-the-fly, a score which is proportional to the functional 

coverage bin hits that occurred because of a given input transaction. This is the reward. The objective of the RL agent is to hit 

as many functional coverage bins as possible. This process reaches a termination condition once we reach full functional 

coverage. 

Before we address the RL environment state, we recall here that RL problems are modelled as Markov Decision Processes 

and need to exhibit the Markov property, meaning that the current RL environment state only, contains enough information for 

the RL agent to select optimal actions in the view to maximize future rewards [6, 7]. 

We focus here on functional coverage closure, so our RL environment state is, at every timestep T, either a representation of 

the functional coverage state: what bins have been hit and how many times or a Markov representation of the input transactions 

that created such a coverage state. The Markov representation is clarified further with our LZW compression encoder example. 

We also show the translation of the action-value function Qπ(S,A) to the functional coverage closure problem. 

We emphasize here, that the RL environment state is not the DUT state as represented by the concatenation of its sequential 

elements. We also remark here that generally a typical functional coverage definition for a given DUT generally includes 

various categories representing the features of the design. Using our approach, every category shall be represented by its own 

action-value function Qπ(S,A). 

 

 

 

 

 

 

 

 

 



III. THE LZW COMPRESSION ENCODER 

Our DUT is an LZW compression encoder [8] which architecture is depicted in Figure 2 below: 

 

 
Figure 2:The LZW compression encoder 

The LZW compression encoder receives input sequences of 4-bit symbols and uses a 16-address Content-Addressable 

Memory (CAM) to perform the dictionary-based compression lookup. Hence the compressed output sequence is composed of 

5-bit symbols to represent 32 symbols: 16 original input symbols and 16 CAM addresses. The CAM is cleared every time an 

input sequence starts. It then gets populated anew along with the new input sequence. 

To demonstrate the CAM population process, we consider the following sequence of seven 4-bit hexadecimal input symbols: 

 

Start->A,B,A,B,A,B,A<- End 

 
Transaction 1: Input sequence example 

 

Table 1 details the compression and output generation process: 

 
Timestep Input Symbol 

4-bit HEX 

CAM[address] Output Symbol 

5-bit HEX 

Start: #1 A - - 

#2 B CAM[0] = AB 0A 

#3 A CAM[1] = BA 0B 

#4 B Match on CAM[0] - 

#5 A CAM[2] = ABA 10 

#6 B Match on CAM[0] - 

End: #7 A Match on CAM[2] 12 

 

Table 1: Compression and output generation processes 

The above 28-bit input sequence is compressed into the following 20-bit output sequence: 

 

 

 



Start-> 0A,0B,10,12<-End 

 
Transaction 2: Output sequence example 

Note that if the output symbol is a CAM address, it is preceded by a ‘1’ otherwise it is preceded by a ‘0’. As we reset the 

CAM before every new sequence, the maximum number of symbols that can be written to CAM[0] is two, which is the smallest 

input sequence. We now consider CAM[1]: if we get a CAM[0] match using the 2nd and 3rd symbol of an input sequence, we 

can populate CAM[1] with a maximum of three symbols. This happens only if the three first input symbols are the same. With 

the same reasoning, the maximum number of symbols that can be written to CAM[15], which is the highest CAM address, is 

17. It will happen with a sequence of the same contiguous input symbols, precisely 137 of them. See Figure 3 for the LZW 

compression encoder top level waveforms for compressing the sequence above. 

 

 

 
 

Figure 3: Simulation waveforms of A,B,A,B,A,B,A->0A,0B,10,12 

Note: we have used the Aldec Riviera-PRO research edition for all the digital simulations in this research. 

Figure 4 below depicts a simplified version of the CAM memory array: 

 

 
 

Figure 4: Simplified CAM memory array 

We now consider the LZW compression encoder functional coverage and focus on the CAM write functional coverage [9]. 

We define the bins of this category as follows: for every CAM address, we want to exercise writing every possible input 

sequence length. For CAM[0], this is length is two. For CAM[1], this length is two or three. For CAM[15], this length is two 

to 17. We now evaluate the number of functional coverage bins below: the CAM can store 152 input symbols of 4-bit each: 

two input symbols at CAM[0] and up to 17 at CAM[15], hence in total the CAM can store ((2 + 17) / 2) * 16 = 152 input 

symbols. Now, the smallest input sequence written to the CAM is of two input symbols, so as far as the CAM write functional 

coverage is concerned, this represents one bin. Hence, we have one bin at CAM[0], two bins at CAM[1] and up to 16 bins at 

CAM[15]. This gives us in total ((1 + 16/2) * 16 = 136 CAM write functional coverage bins. 

The input sequence patterns necessary for hitting all these functional coverage bins are very specific and reaching them 

randomly is unlikely, as is shown below using examples. 

For instance, the following input sequence pattern can hit the three symbols written to CAM[3] functional coverage bin: 

 

 

 



Start->A,B,C,C,C,C<-End 

 
Transaction 3: Input sequence example for three symbols in CAM[3] 

AB is written to CAM[0], BC to CAM[1], CC to CAM[2], CC is matched to CAM[2] and finally CCC is written to CAM[3], 

indeed catching three write locations in CAM[3]. 

The next pattern can hit the three symbols written to CAM[4] functional coverage bin: 

 

 

Start->A,B,C,D,D,D,D<-End 

 
Transaction 4: Input sequence example  for three symbols in CAM[4] 

AB is written to CAM[0], BC to CAM[1], CD to CAM[2], DD to CAM[3], DD is matched to CAM[3] and finally DDD is 

written to CAM[4], indeed catching three write locations in CAM[4]. 

During a standard constrained random verification process, it is improbable to hit all the functional coverage bins, by using 

random input symbol generation. In fact, using a uniform distribution to generate our 16 different input symbols (4-bit), we 

have managed to hit a maximum of only 28 CAM write functional coverage bins out of the 136 bins, using a substantial amount 

of input sequences. 

Closing the remainder of the CAM write functional coverage bins necessitates, from a verification team, an internal 

knowledge of the design and the development of customized and directed tests. 

We demonstrate here how an RL agent can, by learning from the RL environment state, as per the definition in section II,  

and the previous functional coverage hits transformed into reward values, generate automatically the input sequences necessary 

to achieve full CAM write functional coverage. The DUT implementation is resident on GitHub and available upon direct 

request. See [13]. 

IV. CO-SIMULATING THE RTL DESIGN AND THE DEEP Q-LEARNING AGENT 

Before we detail the implementation of our functional coverage closure DQN agent, we mention here that the Python 

PyTorch library was used for the purpose of modelling it. PyTorch is an opensource framework, efficient for building deep 

learning models by providing automatic differentiation [11]. 

On the other hand, our TB is described in SystemVerilog [10], and the DUT is modelled using the SystemVerilog RTL 

subset. Therefore, we face the obstacle of co-simulating our DQN agent with our original verification environment. 

To address this issue, we developed the architecture described in Figure 5.  

 



 
 

Figure 5: The co-simulation architecture 

The main idea behind the architecture is that we have two independent processes which are launched simultaneously and run 

concurrently. The first process is the digital simulator, as would normally run in an RTL simulation, and the second one runs 

the DQN agent. The DQN agent awakes from reset in a standby mode, ready for its learning process. It awaits to receive the 

state from the RL environment and then provides back an action based on the output of an FFNN implemented in the RL agent. 

The subsequent state and the reward received from the RL environment, as a consequence of this action, are first used to 

optimize the parameters of our FFNN. The optimization algorithm is the DQN algorithm, as is described in section V. After 

this optimization step is executed, the same state is then fed to our newly optimized FFNN to generate the new action. This 

completes a full learning iteration. 

In terms of RTL verification, this learning iteration is one input transaction driven to the DUT and the processing of its 

impact on the functional coverage, in the view of generating subsequent stimulus. 

The communication between the digital simulator and the DQN agent is achieved using SystemVerilog direct programming 

interface (DPI) and C-embedded Python code. The RL agent opens a server socket using the Python socket library and then 

listens continuously for any activity on this socket.  

The RL environment behaves as a client on this socket. Whenever the RL environment state and the reward need to be sent 

to the DQN agent in order to receive a new action, the RL environment connects to the socket and then the RL agent learning 

iteration process starts, as it listens continuously to the socket. The socket is depicted as the ellipse in Figure 5. 

Implementation wise, we use custom encoding for the state, the reward and the action using size configurable arrays of 8-

bit integers. On the SystemVerilog side, we define the following import “DPI-C”: 

 

 

 

 

 

 

 

 



import "DPI-C" function void rl_python(input bit [7:0] data_in [],output bit [7:0] data_out []); 

 

// And on the the C-side, we use embedded Python: 

 

void rl_python(const svOpenArrayHandle data_in,svOpenArrayHandle data_out) { 

                     Py_Initialize(); 

                     // Python script sending state and reward to RL agent  

                     // and receiving the action from it. 

                     Py_Finalize(); 

} 
Code snippet 1:SystemVerilog to/from Python/PyTorch 

The sizes of the communication arrays are set on-the-fly during the above two-way communication. The SystemVerilog TB 

and the communication implementation are resident on GitHub and available upon direct request. See [13]. 

V. THE DEEP Q-LEARNING AGENT 

Figure 6 shows the full implementation for the DQN agent: 

 
 

Figure 6: The DQN agent 

 LZW compression encoder processes, every clock cycle, a 4-bit input symbol, belonging to an input sequence.  

See Figure 3 for a waveform description of this process. 

The action provided by the RL agent to the RL environment is eventually translated into what input symbol shall be driven 

to the DUT in the next clock cycle. 

The RL environment state is itself a representation of the last 17 input symbols as received by the DUT. A series of 17 input 

symbols is the largest write value and the largest match value, the LZW compression encoder CAM can process. Both the write 

and the match occur at CAM[15], see Figure 4. A sequence of input symbols is directly responsible for the way the CAM gets 

populated. We define further the reward function, which in principle, returns a higher value, the more input symbols are written 

or matched in the CAM. By using both the state and the reward, the DQN agent shall generate symbols to achieve a maximum 

reward, which in terms of verification means, shall converge towards functional coverage closure.  

Figure 7 shows the representation of the RL environment state. It is a 69-bit binary vector: every input symbol is 4-bit and 

the MSB, the valid bit, signals a post-reset state. 



 
 

Figure 7: RL environment state 

The RL agent is in its core a 4-layer FFNN that processes the 69-bit RL environment state vector as defined above and 

produces a 16-element output vector. Each element Q(S,a), of this output vector is an action-value scalar. Q(S,a) is defined as 

the expected future reward in state S, if we  execute action a. Every action is equivalent to driving a specific input symbol. We 

showcase the FFNN using a string diagram [12] in Figure 8: 

 

 
 

Figure 8: The FFNN for the DQN 

The reward itself, in the context of our CAM write functional coverage problem is defined as follows: 

if driving an input symbol causes no CAM activity, then the returned reward is null, otherwise, there are two cases: 

 

1- CAM write -> the reward is the number of input symbols written at the CAM address. 

2- CAM match -> the reward is the number of valid input symbols at the CAM address + 1 

 

We award an additional point for a CAM match on the account of such an event potentially enables a subsequent larger CAM 

write event. 

We use an ε-greedy policy, denoted as π in section II, on the FFNN 16-element action-value output vector. The policy selects 

with a probability ε, Symboli, the input symbol randomly or with a probability (1 – ε), the symbol equivalent to the maximum 

FFNN vector output. This symbol is then driven to the RL environment. This results in a new state Si+1 and a reward R provided 

by the RL environment.  

Before using the new state Si+1 to eventually generate a new input symbol, we execute an optimization pass on our FFNN in 

the view to minimize the loss between Symboli’s original expected reward in state S, and a re-evaluation of Symboli’s expected 

reward in state S, which uses the actual received reward R.  

For this purpose, we use the Q-Learning update rule: 

 

Q(Si,Ai) = (1-α) Q(Si,Ai) + α(R + γmax Q(Si+1,a)) 

 
Formula 2: Q-Learning update rule 

where α is the learning rate, γ is the discount factor, and max Q(Si+1,a) is the maximum Q(S,a) output value as given by the 

FFNN before updating its parameters on the loss, see [6, 7, 8]. In the next section, we detail the actual values used for the Q-

Learning update rule during simulation. Using the Q-Learning update rule, the action-value function Q implemented in the 

FFNN is optimized on each iteration.  

     The policy π used in the DQN agent is ε-greedy with a decreasing value throughout the episodes/epochs. An example is 

demonstrated in the next section. The learning process in DQN is fully independent of the policy. Such algorithms are called 

off-policy algorithms, as the policy choice has no bearing on the prediction accuracy for the action-value function Q(S,A). The 

RL agent PyTorch implementation is resident on GitHub and available upon direct request. See [13]. 



VI. THE DQN SIMULATION RESULTS 

First, we recall here that a standard constrained random simulation, with a uniform distribution used for the input symbol 

generation, brought us to a maximum of 28 hits out of the 136 CAM write functional coverage bins, with a CAM overall 

occupancy of 44 out of 152 CAM locations. In a standard process, the next steps would be manual tuning of constraints and 

writing series of directed tests to address the functional coverage holes. We now report the DQN use performance on the CAM 

write functional coverage. 

During, digital simulations, the post-reset RL environment state is constant and is also the same as between two contiguous 

input sequences. Hence an epoch always starts from the same RL environment state. This is also the first value driven to our 

FFNN. Moreover, every input symbol generates an RL environment state transition as per our definition, creating constant 

feedback for the DQN learning process.  

We run an episode/epoch, equivalent to an input sequence, until the LZW compression encoder CAM is full. This is because 

subsequent input symbols, in the best case would return matches but also many null rewards and this could deteriorate the 

learning process achieved during the CAM population. 

We first start with a simulation that runs 500 episodes/epochs with a linearly decreasing ε-greedy value ranging from full 

exploration: 1.0, where all input symbols are selected randomly, to full exploitation 0.0 where all input symbols are selected 

based on their expected reward as shown by the FFNN output vector. As for the Q-Learning update rule, we set the learning 

rate to one hundredth: 1.00e-2, and the discount factor to 0.75. 

We first bring below in Figure 9, the FFNN loss over the generated symbols. We can observe that it takes around 500 

symbols for the FFNN to converge on a low and constant expected reward estimate. We recall here that our goal is to close the 

CAM write functional coverage, hence we want the DQN agent to generate sequences of input symbols from exploration to 

exploitation until we reach the following termination condition: all 136 CAM write functional coverage bins have been hit at 

least once. 

 
Figure 9: FFNN L1 loss: |X-Y| 

 

Figure 10 is the simulation report after 500 episodes/epochs. We observe that we have managed to hit 133 out of the 136 

CAM write functional coverage bins.  This is an excellent result, compared to a standard simulation with a uniform distribution 

on the input symbols which achieved a maximum of 28. 

 

 
 

Figure 10: 500 episodes/epochs final simulation report 

CAM WR FC bins hit (max 136): 133 -> 97.79% 

Total CAM elements hit (max 152): 152 

CAM addr: 15 

State/LZW sequence: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] 

Reward: 16.0  

Episode 499 is complete. 

Current loss 35.31644058227539 

Experience: 121 of Episode 499 is complete. 

All episodes (epochs) completed, exiting ... 



We now refer to the last RL environment state, appearing at the State/LZW sequence line in  

Figure 10. We remark that this sequence of input symbols is appropriate to populate the higher CAM addresses. On the 

account that full coverage is almost achieved, it is possible that the DQN agent started generating short repeating sequences in 

the first episodes/epochs, and then longer and longer ones, as the simulation went through the episodes/epochs. We investigate 

this point further with the explanation on Figure 11. 

The three last missing bins, in this simulation, are the following ones: 

1- CAM[13] -> write 10 symbols (max 15) 

2- CAM[15] -> write 12 symbols (max 17) 

3- CAM[15] -> write 14 symbols (max 17) 

Figure 11 below, reports how many CAM locations have been written to (the maximum is 152), throughout the input 

symbols generation. The black horizontal line in Figure 11 (and also  

Figure 12), represents the maximum score achieved by a random uniform distribution of input symbols (44).  

 
Figure 11: 500 episodes/epochs CAM overall occupancy 

In total, we have 152 CAM locations, see Figure 4. Because an input sequence written to the CAM is of a minimum of two 

input symbols, it gives us 136 CAM write functional coverage bins.  Back to Figure 11, we can see, at the beginning of the 

process, that around 32 locations get filled very quickly. This is because, the input symbol generation process is fully random 

at the beginning with full exploration and generates mostly non-repeating sequences of two input symbols. Then slowly the 

learning process kicks in and we can see a quasi-linear population of the CAM locations, meaning that the DQN agent generates 

longer and longer repeating input sequences, until it manages to occupy the whole CAM with a long enough sequence of 

repeating input symbols, see the sequences of 3s reported in  

Figure 10. Note though that towards the end of the simulation, when the occupancy reaches 140, we can observe a jump. 

This points to the fact that some functional coverage bins have been skipped, as indeed reported in  

Figure 10. 

To remedy the three remaining uncovered CAM write functional coverage bins, and instead of developing directed tests, as 

we would in a standard verification process, we rerun a DQN simulation with 750 episodes/epochs. This should allow for a 

smoother transition from exploration to exploitation as the decreasing rate for ε is lower than for the first simulation. 

 

Figure 12 shows the CAM overall occupancy throughout the test for the 750 epochs/episodes simulation. 

 

 
Figure 12: 750 episodes/epochs CAM overall occupancy 

The 750 episodes/epochs DQN simulation hits 127 functional coverage bins but most importantly, hit our coverage holes. By 

merging the functional coverage results of both simulations, we have achieved full CAM write functional coverage results for 

the LZW compression encoder. For the sake of comparison, Figure 13 shows the CAM overall occupancy for a standard 

verification process with a uniform input symbol distribution. 



 
Figure 13: CAM overall occupancy with random uniform input distribution 

We see the same steep curve corresponding to random sequences of two input symbols throughout the CAM address range. 

Then most of the time there are no improvement (flat line) unless a sequence of three or four possible is randomly repeated 

and causes a little step. Using many input sequences (above 750) to populate the CAM, we have achieved a maximum of 44 

compared to full CAM population and full CAM write functional coverage for the DQN approach. 

VII. SUMMARY AND CONCLUSION 

RL has been previously used for a range of applications [5] and in this paper, we introduced the use of an adapted DQN 

agent in the context of a modern RTL verification process. During a standard simulation based constrained random coverage 

driven functional verification, the LZW compression encoder used as the DUT in our experiments would require substantial 

manual interventions to create the stimulus necessary to close the CAM write functional coverage. It took our DQN agent two 

series of episodes/epochs, 500 and then 750, to reach all the CAM write functional coverage bins. This result was achieved 

during standard regression processes in terms of simulation time and computing resources. 

We believe this positive result paves the way of a broader use of both the verification environment architecture used in this 

paper and the DQN agent, including in the context of industry semiconductor projects.  

Good design candidates for this paper’s approach are RTL designs that show reluctance in achieving good functional 

coverage results using a standard verification process and require a substantial amount of manual intervention to tune 

randomization constraints and develop directed tests.  
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