
Closing Functional Coverage With Deep Reinforcement Learning
A Compression Encoder Example

Eric Ohana

Queensland University of Technology

CITEC - The University of Bielefeld

Agenda
• Introduction

• RTL Verification and Reinforcement Learning

• The LZW Compression Encoder

• Co-Simulating the RTL Design and the Deep Q-Learning (DQN) Agent

• The DQN Agent

• The Simulation Results (Standard and DQN)

• Summary and Conclusion

• Questions

Introduction

• Reaching the last functional coverage (FC) percentages on a design,
has traditionally been an obstacle to verification closure

• In this presentation, we tap into reinforcement learning tools and
techniques to assist in the simulation based constrained random
coverage driven functional verification

• Specifically, we use a DeepMind Technologies inspired Deep Q-
Learning (DQN) agent to target a functional coverage closure category
reluctant to standard means

RTL Verification
and Reinforcement
Learning

• A Reinforcement Learning (RL) system is
a sequential interaction between an
agent and an environment

• At every iteration, the agent processes a
state and a reward value from the
environment to issue an action back to
this environment

• Action <> Transaction

• Reward <> FC bins hits/misses, the
harder the FC, the higher the reward

• State <> Some representation of how we
reached the current FC state (Markov
Decision Process)

The LZW
Compression
Encoder

Timestep Input Symbol
4-bit HEX

CAM[address] Output Symbol
5-bit HEX

Start: #1 A - -

#2 B CAM[0] = AB 0A

#3 A CAM[1] = BA 0B

#4 B Match on CAM[0] -

#5 A CAM[2] = ABA 10

#6 B Match on CAM[0] -

End: #7 A Match on CAM[2] 12

• The shortest sequence is of 2 input symbols.
There are 136 CAM write FC bins to cover out
of 152 CAM locations

• The CAM write functional coverage category
necessitates very specific sequences!

• It is close to impossible to reach them
randomly!

• Can our DQN agent help?

Co-Simulating the RTL
Design and the Deep Q-
Learning (DQN) Agent

• Our RL agent runs in Python
and PyTorch

• Our SV D&V env runs on
Aldec Riviera-PRO (research
edition)

• Using SV DPI/C/C Embedded
Python and a client/server
networking protocol, both
can communicate efficiently!

SV<>PyTorch

The DQN Agent

The Standard
Simulation Results

• By running a uniform input
symbols distribution, over
many episodes, where an
episode starts with an empty
CAM and ends with a full CAM.

• We have managed to hit 28
CAM write bins out of 136 with
a CAM overall occupancy of 44
out of 152

29% CAM write FC

The DQN
Simulation
Results
• We first run 500 episodes

with an ε-greedy linearly
decreasing

• We observe a constant
incremental increase in the
CAM overall occupancy

• We have managed to hit 133
CAM write bins out of 136
with a CAM overall
occupancy of 152 out of 152

97.8% CAM write FC

The DQN Simulation Results

• To target the 3 remaining CAM write FC bins, we run 750 episodes, to
allow a smoother transition from exploration to exploitation

• By merging both DQN simulations, we reach 100% CAM write
functional coverage

Summary and Conclusion

• We identified a functional coverage category which is hard to fully
cover using standard means: the CAM write functional coverage for
the LZW compression encoder

• We defined an action-value function for a DQN agent, linking
between input symbols and the expected future rewards expressed as
CAM write functional coverage bins hits

• We used a simple ε–greedy policy allowing a transition from
exploration (full randomness) to exploitation (using reinforcement
learning lessons) to reach 100% functional coverage

Questions

?

Appendix: The DQN Agent in Equations
• A Deep Q-Networks (DQN) agent uses a neural network to model an

action-value function

• Our action-value function called Qπ(S,A) processes the environment
state S and issues an output vector value representing the expected
future reward R for every action A called E(R|A,S, π)

• In the verification realm, it just means that, given the current
functional coverage state, every input symbol we can chose for the
next transaction, has a particular impact on the CAM write functional
coverage overall score

• π is called a policy and is just a way of selecting the next transaction
from the output vector E(R|A,S, π)

	Slide 1: Closing Functional Coverage With Deep Reinforcement Learning A Compression Encoder Example
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: RTL Verification and Reinforcement Learning
	Slide 5: The LZW Compression Encoder
	Slide 6: Co-Simulating the RTL Design and the Deep Q-Learning (DQN) Agent
	Slide 7: The DQN Agent
	Slide 8: The Standard Simulation Results
	Slide 9: The DQN Simulation Results
	Slide 10: The DQN Simulation Results
	Slide 11: Summary and Conclusion
	Slide 12: Questions
	Slide 13: Appendix: The DQN Agent in Equations

