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Introduction

• Reaching the last functional coverage (FC) percentages on a design, 
has traditionally been an obstacle to verification closure

• In this presentation, we tap into reinforcement learning tools and 
techniques to assist in the simulation based constrained random 
coverage driven functional verification

• Specifically, we use a DeepMind Technologies inspired Deep Q-
Learning (DQN) agent to target a functional coverage closure category 
reluctant to standard means



RTL Verification 
and Reinforcement 
Learning

• A Reinforcement Learning (RL) system is 
a sequential interaction between an 
agent and an environment

• At every iteration, the agent processes a 
state and a reward value from the 
environment to issue an action back to 
this environment

• Action <> Transaction

• Reward <> FC bins hits/misses, the 
harder the FC, the higher the reward

• State <> Some representation of how we 
reached the current FC state (Markov 
Decision Process)



The LZW 
Compression 
Encoder

Timestep Input Symbol
4-bit HEX

CAM[address] Output Symbol
5-bit HEX

Start: #1 A - -

#2 B CAM[0] = AB 0A

#3 A CAM[1] = BA 0B

#4 B Match on CAM[0] -

#5 A CAM[2] = ABA 10

#6 B Match on CAM[0] -

End: #7 A Match on CAM[2] 12

• The shortest sequence is of 2 input symbols. 
There are 136 CAM write FC bins to cover out 
of 152 CAM locations

• The CAM write functional coverage category 
necessitates very specific sequences!

• It is close to impossible to reach them 
randomly!

• Can our DQN agent help?



Co-Simulating the RTL 
Design and the Deep Q-
Learning (DQN) Agent

• Our RL agent runs in Python 
and PyTorch

• Our SV D&V env runs on 
Aldec Riviera-PRO (research 
edition)

• Using SV DPI/C/C Embedded 
Python and a client/server 
networking protocol, both 
can communicate efficiently!

SV<>PyTorch



The DQN Agent



The Standard 
Simulation Results

• By running a uniform input 
symbols distribution, over 
many episodes, where an 
episode starts with an empty 
CAM and ends with a full CAM.

• We have managed to hit 28 
CAM write bins out of 136 with 
a CAM overall occupancy of 44 
out of 152

29% CAM write FC



The DQN 
Simulation 
Results
• We first run 500 episodes 

with an ε-greedy linearly 
decreasing

• We observe a constant 
incremental increase in the 
CAM overall occupancy 

• We have managed to hit 133 
CAM write bins out of 136 
with a CAM overall 
occupancy of 152 out of 152

97.8% CAM write FC



The DQN Simulation Results

• To target the 3 remaining CAM write FC bins, we run 750 episodes, to 
allow a smoother transition from exploration to exploitation

• By merging both DQN simulations, we reach 100% CAM write 
functional coverage



Summary and Conclusion

• We identified a functional coverage category which is hard to fully 
cover using standard means: the CAM write functional coverage for 
the LZW compression encoder

• We defined an action-value function for a DQN agent, linking 
between input symbols and the expected future rewards expressed as 
CAM write functional coverage bins hits

• We used a simple ε–greedy policy allowing a transition from 
exploration (full randomness) to exploitation (using reinforcement 
learning lessons) to reach 100% functional coverage



Questions

?



Appendix: The DQN Agent in Equations
• A Deep Q-Networks (DQN) agent uses a neural network to model an 

action-value function

• Our action-value function called Qπ(S,A) processes the environment 
state S and issues an output vector value representing the expected 
future reward R for every action A called E(R|A,S, π)

• In the verification realm, it just means that, given the current 
functional coverage state, every input symbol we can chose for the 
next transaction, has a particular impact on the CAM write functional 
coverage overall score 

• π is called a policy and is just a way of selecting the next transaction 
from the output vector E(R|A,S, π)
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