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Introduction

e Reaching the last functional coverage (FC) percentages on a design,
has traditionally been an obstacle to verification closure

* In this presentation, we tap into reinforcement learning tools and
techniques to assist in the simulation based constrained random
coverage driven functional verification

 Specifically, we use a DeepMind Technologies inspired Deep Q-
Learning (DQN) agent to target a functional coverage closure category
reluctant to standard means
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RTL Verification
and Reinforcement
Learning

A Reinforcement Learning (RL) system is
a sequential interaction between an
agent and an environment

At every iteration, the agent processes a
state and a reward value from the
environment to issue an action back to
this environment

Action <> Transaction

Reward <> FC bins hits/misses, the
harder the FC, the higher the reward

State <> Some representation of how we
reached the current FC state (Markov
Decision Process)
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The LZW
Compression
Encoder

B CAMIO] = 45
“ A CAM[1] = BA 0B
“ B Match on CAM[0]
“ A CAM[2] = ABA 10
“ B Match on CAM[0]

A Match on CAM[2] 12

The shortest sequence is of 2 input symbols.
There are 136 CAM write FC bins to cover out
of 152 CAM locations

The CAM write functional coverage category
necessitates very specific sequences!

It is close to impossible to reach them
randomly!

Can our DQN agent help?
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Sequence of 4-bit input
symbols: 0x0 to OxF

DUT: LZW Compressor

16 Addresses

CAM
Memory

Sequence of 5-bit output
symbols: 0x00 to 0x1F
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Co-Simulating the RTL
Design and the Deep Q-
Learning (DQN) Agent

* Our RL agent runs in Python
and PyTorch

* Our SV D&V env runs on
Aldec Riviera-PRO (research
edition)

* Using SV DPI/C/C Embedded
Python and a client/server
networking protocol, both
can communicate efficiently!

accellera)

SYSTEMS INITIATIVE

/ DUT in
() monmor:  ———>
s to SV UF DUT

listen:

environement

FUNCTIONAL
COVERAGE: listens
to SV IF functi

ddddddddd

SCOREBOARD:
DUT == MODEL OUT ?

DRIVER: drives all

AAAAA

Pytorch cided FENN SV< > PyTO r.c h

Communicati
4 T T IR i socket server
sV ‘ sV
IIF LZW Compression Encoder: F
uT the DUT DuT
in ‘ out
Verification Environment Simulation Linux Process. thon
environment witl Y
Legend:
Digital lyna
IZ]\> signal flow | | RTL design ty U implementation == I0datatran
S §; Verilog N Li para
. Sla:t? 8 ‘j irtual Pyth ty ) Pyth ity e cesse:
Y 7 interface aratiol
I/F: il a




The DQN Agent

RL action/
Next transaction
(input symbol)

—

RL state/
Functional coverage /
current state

representation

I

The DQN
Agent

RL reward/CAM write functional coverage score
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The Standard
Simulation Results

* By running a uniform input
symbols distribution, over
many episodes, where an
episode starts with an empty
CAM and ends with a full CAM.

* We have managed to hit 28
CAM write bins out of 136 with
a CAM overall occupancy of 44
out of 152

29% CAM write FC
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The DQN
Simulation

Results

e We first run 500 episodes
with an e-greedy linearly
decreasing

* We observe a constant
incremental increase in the
CAM overall occupancy

* We have managed to hit 133
CAM write bins out of 136
with a CAM overall
occupancy of 152 out of 152

97.8% CAM write FC
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The DQN Simulation Results

* To target the 3 remaining CAM write FC bins, we run 750 episodes, to
allow a smoother transition from exploration to exploitation

* By merging both DQN simulations, we reach 100% CAM write
functional coverage

()

SYSTEMS INITIATIVE



Summary and

Conclusion

* We identified a functional coverage category which is hard to fully
cover using standard means: the CAM write functional coverage for

the LZW compression encoder
* We defined an action-value function

for a DQN agent, linking

between input symbols and the expected future rewards expressed as

CAM write functional coverage bins

* We used a simple e—greedy policy al
exploration (full randomness) to exp

Nits

owing a transition from

oitation (using reinforcement

learning lessons) to reach 100% functional coverage
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Questions
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Appendix: The DQN Agent in Equations

* A Deep Q-Networks (DQN) agent uses a neural network to model an
action-value function

* Our action-value function called Q_(S,A) processes the environment
state S and issues an output vector value representing the expected
future reward R for every action A called E(R|A,S, 7)

* In the verification realm, it just means that, given the current
functional coverage state, every input symbol we can chose for the
next transaction, has a particular impact on the CAM write functional
coverage overall score

* mis called a policy and is just a way of selecting the next transaction
from the output vector E(R|A,S, 7)
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