
Hierarchical UPF Design – The ‘Easy’ Way

Brandon Skaggs

brandon.skaggs@infineon.com

Chris Turman

chris.turman@infineon.com

Joe Whitehouse

joe.whitehouse@infineon.com

Cypress Semiconductor, An Infineon Technologies Company

Abstract -- While there are obvious benefits to reusing pre-verified, IP-centric Unified Power Format (UPF) files

within a system-level power intent definition, there are also several concerns related to EDA tool support of the required
LRM constructs and complications that arise from applying power intent to new design scopes. A summary of the issues
encountered, approaches to adopt (or avoid), and the implications on design and verification flow requirements is

presented. Recommendations for future UPF LRM enhancements to allow better support for UPF reuse in a hierarchical
design are provided.

I. INTRODUCTION AND MOTIVATION

The IEEE1801 Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems—

commonly known as the Unified Power Format (UPF) standard—provides a framework for describing the power

intent and supply distribution of a design for both implementation and power-aware verification tools. Hierarchies

with common supply behavior can be collected into ‘domains’ where their supply connectivity and expected

interactions with other domains (power state information) is described in an abstract way. This abstract intent can

be used by functional power-aware simulators to verify correct functional behavior along with power state

transitions and correct isolation and retention during power-down. This verified power intent can then be used by

synthesis tools to select appropriate power cells (level-shifters, isolation cells, or retention elements), LINTing tools

to verify that the implementation is sound, and layout tools to properly implement the intent.

A. Motivation

With verification schedules pressured by time-to-market concerns, there is a strong desire to leverage verification

done by IP and subsystem teams. By adopting a hierarchical UPF approach, IP UPF descriptions (written with re-use

in mind) can be leveraged at higher levels of integration. There are many UPF language constructs that seem to

promise ‘easy’ integration of hierarchical UPF files; however, not all UPF language constructs are supported equally

by all EDA vendors, and some language options that seem to be exactly what would be needed for this approach do

not do what you would expect…

Easy hierarchical design and re-use of IP in the RTL design world has been enabled by clear definitions of scope,

port maps, and SystemVerilog interfaces. It’s long past time we enable efficient hierarchical design of power intent

in the same manner.

B. Organization of this Paper

We begin with a discussion of key terms in and concepts Section II before presenting the test setup in Section

III—including a simplified system that demonstrates the real-world scenario. Section IV presents the specific issues

and experimental findings. Section V presents recommendations based on the findings before conclusions are

presented in Section VI.

II. KEY TERMS & CONCEPTS

Unified Power Format (UPF) IEEE standard format for describing intended design power intent abstractly.

Supply Net A supply net represents a supply or ground net within a power domain. Supply

nets are the key component of supply sets, but they can also be directly routed to

the supply pins of macros or supply ports.

Supply Set A supply set is a collection of supply nets where the function of each net has

been defined, and they are used to describe sets of functions within a domain or

strategy. Supply sets typically contain definitions for power and ground, but

they can also contain definitions for nwell, pwell, deepnwell, and deeppwell

connections. In some ways, supply sets provide the same convenience as

SystemVerilog interfaces—which allow the description of an abstract collection

of wires that can be referred to as a group.

Power Domain A power domain defines a collection of logic that is powered in a similar way.

Domains are required to define a primary supply set, but they can also be

defined with secondary supply sets for retention or isolation. These

default_retention and default_isolation supply sets are connected to the

secondary/backup power of retention flops or isolation cells placed within the

domain.

 While UPF domains are considered logical collections of instances, there are

implications when it comes to the physical circuit layout. Placement tools must

be provided guidance on where items of any given power domain can be

placed—as it must be guaranteed that the supplies associated with the domain

are available.

Scope UPF commands are interpreted relative to a given design scope. The command

set_scope can be used to change the active scope for any commands that follow.

Also, UPF files can be loaded with a scope argument—which is equivalent to

changing the active scope and design top to the scope given, applying the power

intent, and reverting to the original scope and design top. UPF files can only

contain references to instances at and below the current scope.

 Each scope brings with it a unique namespace, so the domain PD_ACTIVE and

u_instance/PD_ACTIVE are seen as independent domains. Similarly; supply

nets, supply ports, and supply sets defined at different scope are not implicitly

connected—but instead are considered independent objects.

Equivalence Supply nets and sets can be declared to be functionally equivalent and/or

electrically equivalent. Functional equivalence implies parallel but independent

circuitry; electrical equivalence implies functional equivalence.

 If a net N and a port P are connected (via connect_supply_net command), then N

and P are electrically equivalent. The associate_supply_set command can also

be used to declare two supply sets as functionally equivalent. Supply nets and

supply sets can also both be declared equivalent with the set_equivalent

command.

Association A supply set can be associated with a power domain when it is created (using

the ‘supply’ argument to create_power_domain)—or the supply set handle of

the domain can be assigned later (using the associate_supply_set command).

Hierarchical paths (to different scope) are allowed as arguments to

associate_supply_set by the UPF LRM—allowing power domains and supply

sets of different scope to be associated with one another.

Power State Table Supply sets and power domains typically have power states defined—describing

the allowable combination of supply net values within the design. Power states

for supply nets can be defined with voltages using the add_port_state or they

can optionally be defined without voltage (abstractly) with add_power_state.

The power state table is used to analyze where domain boundaries exist where

supplies differ in duration (more or less “ON” relatively) or voltage

(higher/lower voltages between source and sink).

III. TEST SETUP

For our real use case, the power intent of a mature design (of a modest-sized ‘wearable’ SOC) was described

using hierarchical design methods – rather than a top-down power intent definition. For the re-usable IP, we

focused on a highly parameterized design where the desired power intent varied based on the instantiation

environment; certain portions of the IP were retained if the instance were in a switchable power domain, while

certain IO were only required to be isolated when the IP were in a ‘more relatively on’ domain than the instantiating

environment.

For the purposes of demonstration, however, a simple system shown in Figures 1-3 was constructed to

demonstrate the principles discussed in the paper.

State P_RET Voltage

OFF Off

ON 1.0

RET 0.7

Figure 1. IP containing Switchable Domain and Retention strategy

Figure 2. IP with Isolation Strategy

IP_A, shown in Figure 1, contains a top-level domain (P_TOP) that is relatively always-on compared to a

subdomain (P_RET) that can be switched off—with key state elements retained. The module also defines a state

(RET) where the retention voltage can be a lower voltage than the nominal operational voltage. Figure 2 shows

IP_B, which contains isolation strategies for any inputs that could potentially be switched off.

Figure 3. Hierarchical System under Test

The system shown in Figure 3 contains two instances of IP_A – one where the P_RET domain is connected to the

switched off supplies (instance C1), and one where the switching capability isn’t used. Because of this, the instance

C3 of IP_B needs to isolate the inputs of one but not the other.

IV. EXPERIMENTAL FINDINGS

The approach taken was to use the most abstract methods available in the UPF LRM for integrating IP power

intent at the system level and evaluate the results with simulation, static multi-voltage rule checking, synthesis, and

layout tools. Whenever a language construct was not accepted – or produced unexpected results—a more explicit

method for integration was then applied. In this section, we’ll discuss the specific language constructs attempted

and the issues faced. (Note: wherever tools are mentioned, the preferred production version is discussed; notes are

added where newer versions have improved support.)

A. Scoping Issues

The UPF LRM allows for the application of a power intent description to a specific instance in the hierarchy using

the load_upf command. While this allows references (instance paths, ports, etc.) within a power intent defined at the

IP scope to resolve properly when the IP is instantiated within a higher-level design, the namespace rules for UPF

mean that each IP instance loading this intent creates its own scoped definition for any power domain within the

UPF.

LRM Resolution Options:

The concept of combining IP domains into a higher-level domain is somewhat addressed with the

create_composite_domain command, which was introduced in the UPF 2.1 LRM; however, as shown in Table 1,

this command is not available from a practical perspective due to anemic support from EDA vendors.

 Simulator Tool A Synthesis Tool B Formal Checker C Phys Imp Tool D

create_composite_domain Supported Not supported Not supported Not supported

Table 1. UPF Option for Combining Domains

Also, strictly-speaking, this command allows a ‘super’ domain to be created, but they are not meant to be

physical, implementable domains, as discussed in Section 6.13 of the UPF 2.1 LRM: “A composite power domain is

a simple container for a set of power domains. Unlike a power domain, a composite domain has no corresponding

physical region on the silicon…”

Impact on Implementation:

This creates problems during implementation, because – without support for setting domain equivalence – each

IP-scoped domain must be handled independently during synthesis and place-and-route.

...

set_attribute library_domain lib_list1 [find / -power_domain PD_SYS_AON]

set_attribute library_domain lib_list1 [find / -power_domain C1/PD_TOP]

set_attribute library_domain lib_list1 [find / -power_domain C2/PD_TOP]

...

set_attribute library_domain lib_list2 [find / -power_domain PD_SYS_SW]

set_attribute library_domain lib_list2 [find / –power_domain C1/PD_RET]

set_attribute library_domain lib_list2 [find / -power_domain C2/PD_RET]

...

Figure 4. Handling Scoped IP domains in Synthesis Scripts

This snippet from a synthesis setup script shown in Figure 4 shows how the proliferation of IP-scoped domains

impacts basic implementation tasks. While this is not a difficult problem to resolve, the requirement to track and

update all implementation task scripts each time a new IP is added is cumbersome and could be avoided if there

were a way within the language to declare hierarchically-scoped domains to be treated as if they appeared at a

different scope.

B. Supply Set Abstraction

Supply sets are collections of related supply nets (power, ground, nwell, pwell, etc), grouped for ease of use.

Several UPF LRM commands operate on supply sets (connect_supply_set, associate_supply_set, set_equivalent);

however, our findings were that many EDA tools either did not support these commands, or the commands were not

useful for making assignments from a supply set at one level of hierarchy to another.

Figure 5 shows example syntax meant to use the ‘supply set-oriented’ commands to make connections between

the system and IP. Table 2 shows three attempts to these commands to describe mapping between IP and system-

scoped supply sets. (Note that ‘N/A’ entries in the table represent situations where support for the given command

was not evaluated due to limitations in other portions of the flow.)

...

associate_supply_set P_SYS.primary -handle C1/P_TOP.primary

associate_supply_set P_SYS.primary -handle C2/P_TOP.primary

associate_supply_set P_SYS.default_retention -handle C1/P_TOP.default_retention

...

set_equivalent C1/P_TOP.primary P_SYS.primary

set_equivalent C2/P_TOP.primary P_SYS.primary

...

Figure 5. Attempting to Use Supply Set-Oriented Commands for Hierarchical Connections

 Simulator Tool A Synthesis Tool B Formal Checker C Phys Imp Tool D

associate_supply_set Partial: top-down a Partial: domain b N/A Not supported c

connect_supply_set N/A Not supported Not supported N/A

set_equivalent N/A Not supported d Supported Not supported

Table 2. EDA tool support for Supply-set Oriented Commands

So, while supply sets are often thought of as analogous to SystemVerilog interfaces – in that they are meant to

allow connections at a higher level of abstraction – they do not appear to be useful for hierarchical design because of

limitations in command support and how EDA vendors expect the commands that are supported to be used.

C. Specifying ‘Optional’ Strategies

Another key component of hierarchical UPF design is the ability to write re-usable IP power intent specifications

that become active based on the instantiating environment; however, inconsistency in UPF language capabilities and

the lack of EDA tool support for native parameterization in UPF complicates matters.

For example, in the system described in Figure 3, re-usable IP_B instance C3 needs to be able to isolate C1_IN,

but does not need isolation to C2_IN since the C2 instance’s P_RET domain will be connected to a relatively-on

supply. Similarly, there is no need to build the contents of C2’s P_RET domain with retention flops.

UPF Language Inconsistency:

Isolation strategies can be written with the ‘-diff_supply_only’ option – to allow the insertion of isolation cells

only when required; however, there is no equivalent option for retention strategies. Experimental results show that

the presence of these strategies was enough for retention cells to be inserted, even if—as specified by the power

state table—the related power domain is never expected to be powered off.

Because of this limitation, the retention strategy for IP_A has to be kept in a separate UPF file that is only loaded

for instances placed within switched domains (as shown in Figure 6). However, it would be preferable to allow

retention strategies to be specified with an ‘-if_switched’ option – so integration teams do not have to choose

between manage these files auxiliary/retention UPF files or possibly getting redundant retention logic.

a Production version had a bug preventing bottom-up assignments; fixed in newer release.
b Only allowed assignments of supply sets associated with IP (sub-scope) domains – not auxiliary supply sets

commonly used for port attribution.
c Not supported with any form of command.
d Command is supported for supply nets; however not for setting equivalence of supply sets.

...

load_upf ip_a.upf C1

load_upf ip_a.upf C2

load_upf ip_a_ret-strategy.upf C2

...

Figure 6: Managing ‘Optional’ Retention Strategies with File Segregation

‘Parameterizable’ Power Intent:

Parameters in UPF have been supported natively since the 2009 (i.e. 2.0) UPF LRM (via load_upf_protected)—a

command which was later deprecated in favor of additional options added to load_upf in the 2015 (3.0) UPF.

However, support for these commands within EDA tools remains uneven—rendering their use impractical. Table 3

shows the EDA support issues faced with the tools available for the project in question.

 Simulator Tool A Synthesis Tool B Formal Checker C Phys Imp Tool D

load_upf_protected Supported Version-dependent Not Supportede Not Supported

load_upf (3.0) Supported Not Supported Not Supported Not Supported

Table 3. EDA tool support for Parameters with Loaded UPF Files

Another approach would be to provide parameters via normal TCL function; for example, IP could provide

parameterization via TCL variables; however, this has a few drawbacks:

• All required TCL variables must have safely-defined default values, however…

• This creates the possibility of namespace collisions; any TCL variables used by an IP power intent would

share a namespace with the sourcing (top-level) UPF. Newly-defined variables at top- or IP-level could

have unintended impact on unrelated portions of the design.

D. IP Power State Re-use

In an ideal hierarchical UPF flow, the system-level power state table would be built up from the submodule power

state tables; support for hierarchical power states has been in UPF since the UPF 2.0 LRM.

However, experimentally, difficulties arise when highly-parametrized IP provide states within their IP power

intent definitions that are not required within the context of the target system. For our example system in Figures 1-

3, IP_A defines a possible state RET that has a lower voltage on the retention supply; however, this state is not used

in our system—where the retention voltage is not lowered. This scenario created errors in our Formal Checker tool:

// Error: (1801_PST_STATE_DROPPED_ROOT) Power state specified at root level is not consistent

with all the power state tables and is being ignored (occurrence:1)

Figure 7: Error indicating conflict with ‘missing’ IP power state

In other situations, during analysis—when conflicts existed between the system and IP power state tables or

supply sets—the result was a bidirectional ‘dropping’ of both IP and system states—resulting in incorrect crossover

analysis. The language for specifying which states should be applied in a conflict (parent or IP-provided state

definition) was not available—from the UPF or the tool command options. The recommendation from the vendor

was to ignore the IP power states by disabling them via tool configuration option.

The lack of support for hierarchical power state definitions meant that the most straightforward approach was to

re-define the system power states and ignore IP-based definitions…

e Command is supported, but ‘param’ option is not.

V. RECOMMENDATIONS

While a hierarchical UPF design was achieved in the end, the methods required for integration by contemporary

EDA tools required explicit supply port connections, explicit IP-to-system power domain mapping during synthesis

and place-and-route, and re-definition of system power states – without leveraging IP-provided states.

For IP design, UPF language options that should have allowed a power intent to be written for multiple, different

instantiation environments did not work—preventing a common IP UPF file to work for multiple instances.

From this exercise, there are several recommendations that should be considered:

• The UPF LRM should provide a mechanism for explicitly setting domain equivalence between parent and

submodule domain definitions.

• UPF constructs that operate on supply nets should be supported by EDA vendors in a manner that allows

connectivity – not just equivalence for power state table analysis.

• EDA vendors must support UPF language constructs that provide a mechanism for parameterized intent

definitions that avoid namespace conflicts.

• The UPF LRM should include an ‘if necessary’ option to retention strategies to allow optional retention

strategies within a switched supply.

• The UPF LRM should provide more flexibility when defining power state tables – to enable IP to specify

which states can be dropped/overridden at integration level and which should be considered essential.

Additionally, the LRM should define clear rules for defining hierarchical states and how conflicts should be

handled.

• EDA vendors should strive to support commands related to supply set and domain equivalence.

VI. CONCLUSIONS

Design complexity and time-to-market requirements continually push for more efficient leveraging of design and

verification of subcomponents, and practical hierarchical low-power design methodologies are critical for

accomplishing this. However, while the components of this methodology are in place, limited support by EDA

vendors for the more ‘contemporary’ LRM concepts—as well as some (albeit minor) inconsistencies in the UPF

LRM itself—stand in the way.

As we approach the tenth anniversary of the LRM revision that provided the constructs and methodology to make

it possible, this paper identifies that the practical hierarchical reuse of power intent—while possible—is a long way

from being ‘easy’…

REFERENCES

[1] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power,
Energy-Aware Electronic Systems”, IEEE Std. 1801-2013, 29 May 2013.

[2] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power,

Energy-Aware Electronic Systems”, IEEE Std. 1801-2015, 5 December 2015.
[3] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power,

Energy-Aware Electronic Systems”, IEEE Std. 1801-2018, 27 September 2018.

