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Abstract -- While there are obvious benefits to reusing pre-verified, IP-centric Unified Power Format (UPF) files 

within a system-level power intent definition, there are also several concerns related to EDA tool support of the required 
LRM constructs and complications that arise from applying power intent to new design scopes.  A summary of the issues 
encountered, approaches to adopt (or avoid), and the implications on design and verification flow requirements is 

presented.  Recommendations for future UPF LRM enhancements to allow better support for UPF reuse in a hierarchical 
design are provided. 

 

 

I.   INTRODUCTION AND MOTIVATION 

 

The IEEE1801 Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems—

commonly known as the Unified Power Format (UPF) standard—provides a framework for describing the power 

intent and supply distribution of a design for both implementation and power-aware verification tools.  Hierarchies 

with common supply behavior can be collected into ‘domains’ where their supply connectivity and expected 

interactions with other domains (power state information) is described in an abstract way.  This abstract intent can 

be used by functional power-aware simulators to verify correct functional behavior along with power state 

transitions and correct isolation and retention during power-down.  This verified power intent can then be used by 

synthesis tools to select appropriate power cells (level-shifters, isolation cells, or retention elements), LINTing tools 

to verify that the implementation is sound, and layout tools to properly implement the intent. 

 

A. Motivation  

With verification schedules pressured by time-to-market concerns, there is a strong desire to leverage verification 

done by IP and subsystem teams. By adopting a hierarchical UPF approach, IP UPF descriptions (written with re-use 

in mind) can be leveraged at higher levels of integration. There are many UPF language constructs that seem to 

promise ‘easy’ integration of hierarchical UPF files; however, not all UPF language constructs are supported equally 

by all EDA vendors, and some language options that seem to be exactly what would be needed for this approach do 

not do what you would expect… 

 

Easy hierarchical design and re-use of IP in the RTL design world has been enabled by clear definitions of scope, 

port maps, and SystemVerilog interfaces.  It’s long past time we enable efficient hierarchical design of power intent 

in the same manner. 

 

B. Organization of this Paper 

We begin with a discussion of key terms in and concepts Section II before presenting the test setup in Section 

III—including a simplified system that demonstrates the real-world scenario.  Section IV presents the specific issues 

and experimental findings.  Section V presents recommendations based on the findings before conclusions are 

presented in Section VI. 

 

 

II. KEY TERMS & CONCEPTS 

 

Unified Power Format (UPF) IEEE standard format for describing intended design power intent abstractly. 

Supply Net A supply net represents a supply or ground net within a power domain.  Supply 

nets are the key component of supply sets, but they can also be directly routed to 

the supply pins of macros or supply ports. 

Supply Set A supply set is a collection of supply nets where the function of each net has 

been defined, and they are used to describe sets of functions within a domain or 



strategy.  Supply sets typically contain definitions for power and ground, but 

they can also contain definitions for nwell, pwell, deepnwell, and deeppwell 

connections.  In some ways, supply sets provide the same convenience as 

SystemVerilog interfaces—which allow the description of an abstract collection 

of wires that can be referred to as a group. 

Power Domain A power domain defines a collection of logic that is powered in a similar way.  

Domains are required to define a primary supply set, but they can also be 

defined with secondary supply sets for retention or isolation.  These 

default_retention and default_isolation supply sets are connected to the 

secondary/backup power of retention flops or isolation cells placed within the 

domain. 

 While UPF domains are considered logical collections of instances, there are 

implications when it comes to the physical circuit layout.  Placement tools must 

be provided guidance on where items of any given power domain can be 

placed—as it must be guaranteed that the supplies associated with the domain 

are available. 

Scope UPF commands are interpreted relative to a given design scope.  The command 

set_scope can be used to change the active scope for any commands that follow.  

Also, UPF files can be loaded with a scope argument—which is equivalent to 

changing the active scope and design top to the scope given, applying the power 

intent, and reverting to the original scope and design top.  UPF files can only 

contain references to instances at and below the current scope. 

 Each scope brings with it a unique namespace, so the domain PD_ACTIVE and 

u_instance/PD_ACTIVE are seen as independent domains.  Similarly; supply 

nets, supply ports, and supply sets defined at different scope are not implicitly 

connected—but instead are considered independent objects. 

Equivalence Supply nets and sets can be declared to be functionally equivalent and/or 

electrically equivalent.  Functional equivalence implies parallel but independent 

circuitry; electrical equivalence implies functional equivalence. 

 If a net N and a port P are connected (via connect_supply_net command), then N 

and P are electrically equivalent.  The associate_supply_set command can also 

be used to declare two supply sets as functionally equivalent.  Supply nets and 

supply sets can also both be declared equivalent with the set_equivalent 

command. 

Association A supply set can be associated with a power domain when it is created (using 

the ‘supply’ argument to create_power_domain)—or the supply set handle of 

the domain can be assigned later (using the associate_supply_set command).  

Hierarchical paths (to different scope) are allowed as arguments to 

associate_supply_set by the UPF LRM—allowing power domains and supply 

sets of different scope to be associated with one another. 

Power State Table Supply sets and power domains typically have power states defined—describing 

the allowable combination of supply net values within the design.  Power states 

for supply nets can be defined with voltages using the add_port_state or they 

can optionally be defined without voltage (abstractly) with add_power_state.  

The power state table is used to analyze where domain boundaries exist where 

supplies differ in duration (more or less “ON” relatively) or voltage 

(higher/lower voltages between source and sink). 

 

 

III.   TEST SETUP 

 

For our real use case, the power intent of a mature design (of a modest-sized ‘wearable’ SOC) was described 

using hierarchical design methods – rather than a top-down power intent definition.  For the re-usable IP, we 



focused on a highly parameterized design where the desired power intent varied based on the instantiation 

environment; certain portions of the IP were retained if the instance were in a switchable power domain, while 

certain IO were only required to be isolated when the IP were in a ‘more relatively on’ domain than the instantiating 

environment. 

For the purposes of demonstration, however, a simple system shown in Figures 1-3 was constructed to 

demonstrate the principles discussed in the paper. 

 

 
 

State P_RET Voltage 

OFF Off 

ON 1.0 

RET 0.7 
 

Figure 1. IP containing Switchable Domain and Retention strategy 

 
Figure 2. IP with Isolation Strategy 

 

IP_A, shown in Figure 1, contains a top-level domain (P_TOP) that is relatively always-on compared to a 

subdomain (P_RET) that can be switched off—with key state elements retained.  The module also defines a state 

(RET) where the retention voltage can be a lower voltage than the nominal operational voltage.  Figure 2 shows 

IP_B, which contains isolation strategies for any inputs that could potentially be switched off. 

 

 
Figure 3. Hierarchical System under Test 

 

The system shown in Figure 3 contains two instances of IP_A – one where the P_RET domain is connected to the 

switched off supplies (instance C1), and one where the switching capability isn’t used.  Because of this, the instance 

C3 of IP_B needs to isolate the inputs of one but not the other. 

 



IV.   EXPERIMENTAL FINDINGS 

 

The approach taken was to use the most abstract methods available in the UPF LRM for integrating IP power 

intent at the system level and evaluate the results with simulation, static multi-voltage rule checking, synthesis, and 

layout tools.  Whenever a language construct was not accepted – or produced unexpected results—a more explicit 

method for integration was then applied.  In this section, we’ll discuss the specific language constructs attempted 

and the issues faced. (Note: wherever tools are mentioned, the preferred production version is discussed; notes are 

added where newer versions have improved support.) 

 

A. Scoping Issues 

The UPF LRM allows for the application of a power intent description to a specific instance in the hierarchy using 

the load_upf command.  While this allows references (instance paths, ports, etc.) within a power intent defined at the 

IP scope to resolve properly when the IP is instantiated within a higher-level design, the namespace rules for UPF 

mean that each IP instance loading this intent creates its own scoped definition for any power domain within the 

UPF. 

 

LRM Resolution Options: 

The concept of combining IP domains into a higher-level domain is somewhat addressed with the 

create_composite_domain command, which was introduced in the UPF 2.1 LRM; however, as shown in Table 1, 

this command is not available from a practical perspective due to anemic support from EDA vendors. 

 

 Simulator Tool A Synthesis Tool B Formal Checker C Phys Imp Tool D 

create_composite_domain Supported Not supported Not supported Not supported 

 
Table 1. UPF Option for Combining Domains 

 

Also, strictly-speaking, this command allows a ‘super’ domain to be created, but they are not meant to be 

physical, implementable domains, as discussed in Section 6.13 of the UPF 2.1 LRM: “A composite power domain is 

a simple container for a set of power domains. Unlike a power domain, a composite domain has no corresponding 

physical region on the silicon…” 

 

Impact on Implementation: 

This creates problems during implementation, because – without support for setting domain equivalence – each 

IP-scoped domain must be handled independently during synthesis and place-and-route. 

 
... 

set_attribute library_domain lib_list1 [find / -power_domain PD_SYS_AON]  

set_attribute library_domain lib_list1 [find / -power_domain C1/PD_TOP] 

set_attribute library_domain lib_list1 [find / -power_domain C2/PD_TOP] 

... 

set_attribute library_domain lib_list2 [find / -power_domain PD_SYS_SW] 

set_attribute library_domain lib_list2 [find / –power_domain C1/PD_RET] 

set_attribute library_domain lib_list2 [find / -power_domain C2/PD_RET] 

... 

 

Figure 4. Handling Scoped IP domains in Synthesis Scripts  
 

This snippet from a synthesis setup script shown in Figure 4 shows how the proliferation of IP-scoped domains 

impacts basic implementation tasks.  While this is not a difficult problem to resolve, the requirement to track and 

update all implementation task scripts each time a new IP is added is cumbersome and could be avoided if there 

were a way within the language to declare hierarchically-scoped domains to be treated as if they appeared at a 

different scope. 

 

B. Supply Set Abstraction 

Supply sets are collections of related supply nets (power, ground, nwell, pwell, etc), grouped for ease of use.  

Several UPF LRM commands operate on supply sets (connect_supply_set, associate_supply_set, set_equivalent); 

however, our findings were that many EDA tools either did not support these commands, or the commands were not 

useful for making assignments from a supply set at one level of hierarchy to another. 



 

Figure 5 shows example syntax meant to use the ‘supply set-oriented’ commands to make connections between 

the system and IP.  Table 2 shows three attempts to these commands to describe mapping between IP and system-

scoped supply sets.  (Note that ‘N/A’ entries in the table represent situations where support for the given command 

was not evaluated due to limitations in other portions of the flow.) 

 
... 

associate_supply_set P_SYS.primary -handle C1/P_TOP.primary 

associate_supply_set P_SYS.primary -handle C2/P_TOP.primary 

associate_supply_set P_SYS.default_retention -handle C1/P_TOP.default_retention 

... 

set_equivalent C1/P_TOP.primary P_SYS.primary 

set_equivalent C2/P_TOP.primary P_SYS.primary 

... 

 

Figure 5. Attempting to Use Supply Set-Oriented Commands for Hierarchical Connections  

 

 

 Simulator Tool A Synthesis Tool B Formal Checker C Phys Imp Tool D 

associate_supply_set Partial: top-down a Partial: domain b N/A Not supported c 

connect_supply_set N/A Not supported Not supported N/A 

set_equivalent N/A Not supported d Supported Not supported 

 
Table 2. EDA tool support for Supply-set Oriented Commands 

 

So, while supply sets are often thought of as analogous to SystemVerilog interfaces – in that they are meant to 

allow connections at a higher level of abstraction – they do not appear to be useful for hierarchical design because of 

limitations in command support and how EDA vendors expect the commands that are supported to be used. 

 

C. Specifying ‘Optional’ Strategies 

Another key component of hierarchical UPF design is the ability to write re-usable IP power intent specifications 

that become active based on the instantiating environment; however, inconsistency in UPF language capabilities and 

the lack of EDA tool support for native parameterization in UPF complicates matters. 

 

For example, in the system described in Figure 3, re-usable IP_B instance C3 needs to be able to isolate C1_IN, 

but does not need isolation to C2_IN since the C2 instance’s P_RET domain will be connected to a relatively-on 

supply.  Similarly, there is no need to build the contents of C2’s P_RET domain with retention flops. 

 

UPF Language Inconsistency: 

Isolation strategies can be written with the ‘-diff_supply_only’ option – to allow the insertion of isolation cells 

only when required; however, there is no equivalent option for retention strategies.  Experimental results show that 

the presence of these strategies was enough for retention cells to be inserted, even if—as specified by the power 

state table—the related power domain is never expected to be powered off. 

 

Because of this limitation, the retention strategy for IP_A has to be kept in a separate UPF file that is only loaded 

for instances placed within switched domains (as shown in Figure 6).  However, it would be preferable to allow 

retention strategies to be specified with an ‘-if_switched’ option – so integration teams do not have to choose 

between manage these files auxiliary/retention UPF files or possibly getting redundant retention logic. 

                                                           
a  Production version had a bug preventing bottom-up assignments; fixed in newer release. 
b  Only allowed assignments of supply sets associated with IP (sub-scope) domains – not auxiliary supply sets 

commonly used for port attribution. 
c  Not supported with any form of command. 
d  Command is supported for supply nets; however not for setting equivalence of supply sets. 



 
... 

load_upf ip_a.upf C1 

 

load_upf ip_a.upf C2 

load_upf ip_a_ret-strategy.upf C2 

... 

 

Figure 6: Managing ‘Optional’ Retention Strategies with File Segregation 

 

‘Parameterizable’ Power Intent: 

Parameters in UPF have been supported natively since the 2009 (i.e. 2.0) UPF LRM (via load_upf_protected)—a 

command which was later deprecated in favor of additional options added to load_upf in the 2015 (3.0) UPF.  

However, support for these commands within EDA tools remains uneven—rendering their use impractical.  Table 3 

shows the EDA support issues faced with the tools available for the project in question. 

 

 Simulator Tool A Synthesis Tool B Formal Checker C Phys Imp Tool D 

load_upf_protected Supported Version-dependent Not Supportede Not Supported 

load_upf (3.0) Supported Not Supported Not Supported Not Supported 
 

Table 3. EDA tool support for Parameters with Loaded UPF Files 

 

Another approach would be to provide parameters via normal TCL function; for example, IP could provide 

parameterization via TCL variables; however, this has a few drawbacks: 

• All required TCL variables must have safely-defined default values, however… 

• This creates the possibility of namespace collisions; any TCL variables used by an IP power intent would 

share a namespace with the sourcing (top-level) UPF.  Newly-defined variables at top- or IP-level could 

have unintended impact on unrelated portions of the design. 

 

D. IP Power State Re-use 

In an ideal hierarchical UPF flow, the system-level power state table would be built up from the submodule power 

state tables; support for hierarchical power states has been in UPF since the UPF 2.0 LRM. 

 

However, experimentally, difficulties arise when highly-parametrized IP provide states within their IP power 

intent definitions that are not required within the context of the target system.  For our example system in Figures 1-

3, IP_A defines a possible state RET that has a lower voltage on the retention supply; however, this state is not used 

in our system—where the retention voltage is not lowered.  This scenario created errors in our Formal Checker tool: 

 

 
// Error: (1801_PST_STATE_DROPPED_ROOT) Power state specified at root level is not consistent 

with all the power state tables and is being ignored (occurrence:1) 

 

Figure 7: Error indicating conflict with ‘missing’ IP power state 

 

In other situations, during analysis—when conflicts existed between the system and IP power state tables or 

supply sets—the result was a bidirectional ‘dropping’ of both IP and system states—resulting in incorrect crossover 

analysis. The language for specifying which states should be applied in a conflict (parent or IP-provided state 

definition) was not available—from the UPF or the tool command options.  The recommendation from the vendor 

was to ignore the IP power states by disabling them via tool configuration option. 

 

The lack of support for hierarchical power state definitions meant that the most straightforward approach was to 

re-define the system power states and ignore IP-based definitions… 

 

 

                                                           
e  Command is supported, but ‘param’ option is not. 



V.   RECOMMENDATIONS 

 

While a hierarchical UPF design was achieved in the end, the methods required for integration by contemporary 

EDA tools required explicit supply port connections, explicit IP-to-system power domain mapping during synthesis 

and place-and-route, and re-definition of system power states – without leveraging IP-provided states. 

 

For IP design, UPF language options that should have allowed a power intent to be written for multiple, different 

instantiation environments did not work—preventing a common IP UPF file to work for multiple instances. 

 

From this exercise, there are several recommendations that should be considered: 

 

• The UPF LRM should provide a mechanism for explicitly setting domain equivalence between parent and 

submodule domain definitions. 

• UPF constructs that operate on supply nets should be supported by EDA vendors in a manner that allows 

connectivity – not just equivalence for power state table analysis. 

• EDA vendors must support UPF language constructs that provide a mechanism for parameterized intent 

definitions that avoid namespace conflicts. 

• The UPF LRM should include an ‘if necessary’ option to retention strategies to allow optional retention 

strategies within a switched supply. 

• The UPF LRM should provide more flexibility when defining power state tables – to enable IP to specify 

which states can be dropped/overridden at integration level and which should be considered essential.  

Additionally, the LRM should define clear rules for defining hierarchical states and how conflicts should be 

handled. 

• EDA vendors should strive to support commands related to supply set and domain equivalence. 

 

 

VI.   CONCLUSIONS 

 

Design complexity and time-to-market requirements continually push for more efficient leveraging of design and 

verification of subcomponents, and practical hierarchical low-power design methodologies are critical for 

accomplishing this.  However, while the components of this methodology are in place, limited support by EDA 

vendors for the more ‘contemporary’ LRM concepts—as well as some (albeit minor) inconsistencies in the UPF 

LRM itself—stand in the way. 

 

As we approach the tenth anniversary of the LRM revision that provided the constructs and methodology to make 

it possible, this paper identifies that the practical hierarchical reuse of power intent—while possible—is a long way 

from being ‘easy’… 
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