
1

Hierarchical UPF Design –
The ‘Easy’ Way

Brandon Skaggs, Chris Turman, & Joe Whitehouse
Cypress Semiconductor, an Infineon Technologies Company

2

• Motivation and Contributions of this Paper

• Simple Hierarchical UPF Design

• Common Hierarchical UPF Design Issues with Parameterizable IP

• Experimental Results

• Analysis & Concluding Remarks

Agenda

3

• Time-to-market concerns drive reuse and hierarchical approaches to
design and verification…

• Reuse of IP in RTL design is accomplished with clear definitions of
scope, port maps, SV interfaces, parameters, etc.…

• But UPF language gaps – or gaps in implementation by EDA vendors –
makes reuse of IP power intent less straightforward.

• Not all language options are supported across tool vendors; some language
options do not do what you would expect…

• An understanding of these issues can inform best practices – and
possibly suggest improvements in future IEEE 1801 revisions.

Motivation

4

• This paper presents a case study for a hierarchical UPF design
approach using highly-parameterized, power-aware IP– including the
specific language constructs attempted and the issues encountered.

• This presentation will:
• Present a simple hierarchical UPF design for discussion

• Discuss common issues related to hierarchical UPF design with IP re-use

• Present experimental findings

• Conclude with a review of final recommendations – including possible
enhancements to future UPF LRM revisions

Contributions

5

Simple Hierarchical UPF Design

6

IP A

IP_A

P_RET (switched)

P_TOP (always-on)
• Top domain P_TOP is relatively

always-on compared to
subdomain P_RET.

• P_RET domain can be switched
off – with key elements retained.

• Retention cells can optionally be
run at lower voltage.State P_RET Voltage

OFF Off

ON 1.0

RET 0.7

7

IP B

• Top domain P_MUX is relatively
on compared to the system.

• Inputs to IP_B contain ISO
strategies to handle situations
where driving supplies are
switched off.

IP_B

P_MUX (always-on)

8

System
• C1 instance of

IP_A has P_RET
switched off

• C2 instance of
IP_A has P_RET
only in ‘ON’
state.

• C2 retention and
C2_IN isolation
not needed

SYS

P_SYS (always-on, no LV option)
C3

IP_A

C1

RET

IP_A

C2

RET

IP_B

P_SW

C1_IN

C2_IN

9

Common Hierarchical UPF Design Issues
with Parameterizable IP

10

• UPF load_upf command allows loading of IP UPF at a specific System
hierarchy; this allows instance paths, ports, etc. written at IP scope to
resolve.

• However, objects loaded at a given scope have their own namespace:
• C1/PD_TOP is unique and independent with respect to C2/PD_TOP

• There is no ‘set equivalent domain’ language within the UPF LRM…

• The create_composite_domain command was added in UPF 2.1 for
‘clubbing’ domains into groups…

Scoping Issues

11

• UPF provides the concept of supply sets for grouping and handling
supply nets collectively.

• Commands exist for associating supply sets with domains, setting
supply sets as equivalent for analysis, and connecting supply sets to
macro pg_pin type pins…

• There is also a connect_supply_set command for implicitly connecting
a supply set to a given set of elements. Looks easy enough…

Supply Set Abstraction

12

• Re-usable IP could be instantiated in contexts where defined
strategies are not required.

• Isolation strategies can be written to only be active when a true
boundary exists (i.e., -diff_supply_only option); however, there is no
equivalent option for retention strategies.

• Parameterization of the IP UPF with TCL variables is an option;
load_upf_protected (UPF 2.0) and load_upf (UPF 3.0+) both provide
options for passing parameters to IP UPF via TCL variables…

Specifying ‘Optional’ Strategies

13

• Support for hierarchical power states has been available in UPF since
the UPF 2.0 LRM.

• However, IP could define power states that may not be used—
depending on the instantiating system power states.

• Important to identify if defined system power states conflict with IP
power state definitions…

• …but no UPF language facility for specifying IP or system power state
precedence.

IP Power State Reuse

14

Experimental Results

15

• Existing (mature) design of a modest-sized ‘wearable’ SoC was re-
written using hierarchical approach.

• The most abstract methods available in the UPF LRM for integrating IP
power intent at system level were attempted; more explicit language
was used only when issues were encountered.

• The results from simulation, static multi-voltage rule checking,
synthesis, and layout tools were compared to existing (flat) method.

Hierarchical Design Case Study

16

• Preferred production versions of EDA tools were used; notes are
added where newer versions had improved support.

• ‘N/A’ table entries represent situations where support for the given
command was not evaluated due to limitations in other portions of
the flow.

Hierarchical Design Case Study

17

• The create_composite_domain command was not well supported:

• Furthermore, Section 6.13 of the UPF 2.1 LRM indicates it was never
intended for the creation of implementable domains:

“A composite power domain is a simple container for a set of power domains.
Unlike a power domain, a composite domain has no corresponding physical
region on the silicon…”

Results: IP/System Scoping

UPF Command Simulator A Synth Tool B Formal Tool C Phy Imp Tool D

create_composite_domain Supported Not supported Not supported Not Supported

18

• Impact on implementation: manual handling of each newly created IP-
scoped domain…

...
set_attribute library_domain lib_list1 [find / -power_domain PD_SYS_AON]
set_attribute library_domain lib_list1 [find / -power_domain C1/PD_TOP]
set_attribute library_domain lib_list1 [find / -power_domain C2/PD_TOP]
...
set_attribute library_domain lib_list2 [find / -power_domain PD_SYS_SW]
set_attribute library_domain lib_list2 [find / –power_domain C1/PD_RET]
set_attribute library_domain lib_list2 [find / -power_domain C2/PD_RET]
...

• Maintenance is tedious and error-prone…

• The UPF LRM should provide a method for setting domain
equivalence.

Results: IP/System Scoping

19

• The commands related to assigning supply sets were not well
supported by the EDA tools:

Results: Supply Set Abstraction

UPF Command Simulator A Synth Tool B Formal Tool C Phy Imp Tool D

associate_supply_set Supported* Partial: domain N/A Not supported

connect_supply_set N/A Not supported Not supported N/A

set_equivalent N/A Not supported Supported Not Supported

* Bug fixed in newer release

20

• Design reverted to making explicit supply port/supply net
connections…

• UPF constructs that operate on supply nets should be supported by
EDA vendors in a manner that allows connectivity – not just
equivalence for power state table analysis.

Results: Supply Set Abstraction

21

• Synthesis results showed that the presence of a retention strategy
was sufficient to cause retention cells to be used – regardless of
whether the power state table indicated retention was needed.

• Ultimately handled by including separate UPF files with retention
strategy—loaded only for instances known to require retention, i.e.:

...
load_upf ip_a.upf C1
load_upf ip_a_ret-strategy.upf C1
load_upf ip_a.upf C2
...

• The UPF LRM should include an ‘if necessary’ option to retention
strategies to allow optional retention strategies.

Results: ‘Optional’ Strategies

22

• UPF LRM commands that would manage parameterized IP intent via
TCL variables in a name-scoped way were found to be not well
supported by EDA vendors:

Results: ‘Optional’ Strategies

UPF Command Simulator A Synth Tool B Formal Tool C Phy Imp Tool D

load_upf_protected (2.1) Supported Version-dependent (1) Not supported (2) Not Supported

load_upf (3.x) Supported Not Supported Not Supported Not Supported

(1) Newer version added support
(2) Command supported, but ‘param’ option of command not supported

23

• Handling IP parameterization via TCL variables manually is possible
but also risky.

• All required TCL variables must have safely-defined default values;
however, this creates the possibility of namespace collisions

• Any TCL variables used by an IP power intent would share a namespace with
the sourcing (top-level) UPF.

• Newly-defined variables at top-or IP-level could have unintended impact on
unrelated portions of the design if names collide…

• EDA vendors must support UPF language constructs that provide a
mechanism for parameterized intent definitions that avoid
namespace conflicts.

Results: ‘Optional’ Strategies

24

• Experimentally, it was difficult to reuse IP power state tables where
unused (IP) states existed (e.g. instance C2’s OFF and RET states)

• Formal tools complained of ‘unused’ IP states:
// Error: (1801_PST_STATE_DROPPED_ROOT) Power state specified at root level is not
// consistent with all the power state tables and is being ignored (occurrence:1)

• In other cases, conflicts between IP and system power state tables
resulted in the ‘dropping’ of both – which resulted in incorrect
crossover analysis.

• Recommendation from the vendor was to disable IP states via tool option…

• The UPF LRM should provide a mechanism for specifying how to
resolve IP to system conflicts.

Results: IP Power State Reuse

25

• Care must be taken to maintain lists of IP-scoped domains for use in
synthesis and PNR scripting…

• Direct net-to-port supply connections are the only reliable way to
make connections across UPF scope.

• ‘Optional’ IP retention strategies should be maintained in
independent UPF files to make them easier to apply only where
needed.

• IP and system power state definition conflicts can be difficult to
resolve; defining the system power states from top-down can avoid
this.

Summary of Results

26

Analysis & Conclusions

27

• The UPF LRM should provide a mechanism for explicitly setting
domain equivalence between parent and submodule domain
definitions.

• UPF constructs that operate on supply nets should be supported by
EDA vendors in a manner that allows connectivity – not just
equivalence for power state table analysis.

• The UPF LRM should include an ‘if necessary’ option to retention
strategies to allow optional retention strategies within a switched
supply.

Analysis

28

• EDA vendors must support UPF language constructs that provide a
mechanism for parameterized intent definitions that avoid
namespace conflicts.

• The UPF LRM should provide more flexibility when defining power
state tables – to enable IP to specify which states can be
dropped/overridden at integration level and which should be
considered essential.

• Additionally, the LRM should define clear rules for defining
hierarchical states and how conflicts should be handled.

Analysis

29

Conclusions

• Design complexity and time-to-market requirements continually push for
more efficient leveraging of design and verification of subcomponents, and
practical hierarchical low-power design methodologies are critical for
accomplishing this.

• However, while the components of this methodology are in place, limited
support by EDA vendors for the more ‘contemporary’ LRM concepts—as
well as some (albeit minor) inconsistencies in the UPF LRM itself—stand in
the way.

• As we approach the tenth anniversary of the LRM revision that provided
the constructs and methodology to make it possible, this paper identifies
that the practical hierarchical reuse of power intent—while possible—is a
long way from being ‘easy’…

30

Questions?
Thank you for your attention!

