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Abstract-Verification becomes more crucial in the design of complex systems on a chip. To make this process more 

sustainable, the verification IPs (VIPs) have to be utilized. The internals of the VIP are usually designed based on the 

requirements, which cannot be easily extracted from the specification. Thus, Large Language Models (LLMs) have been 

used in order to automatically identify the requirements. The experimental study shows that GPT-2 model provides good 

performance (Precision=0.618, Recall=0.874) on the data extracted from M-PHY 4.1 specification. The trained model has 

shown better performance comparing to the generally trained bigger model (GPT 3.5). The proposed model has also been 

integrated into an automation system for technical documents analysis. The system has shown the improvement of the 

requirements extraction process by at least 20% compared to the traditional manual process. 

 

I.   INTRODUCTION 

Nowadays, modern systems on a chip (SoC) become more sophisticated due to high complexity of their design. As 

a result, a typical SoC design includes many external reusable Intellectual Property (IP) cores, which drastically reduce 

the design time. On the other hand, verification process may take more than half of the total design time. Therefore, 

in order to reduce verification time, engineers utilize verification IPs (VIPs) [1]. 

According to the definition, verification process is aiming to check whether the system meets requirements 

described in the specification [2]. Thus, any verification process requires deep understanding of the system 

specification. Engineers decompose specifications into a set of requirements to develop test benches, stimulus 

sequences, functional models, checkers, coverage model, etc. 

Existing specifications for widely used IPs (e.g., PCIe [3]) may have an extraordinary volume, i.e., thousands of 

pages. This makes manual processing of frequently changing specifications a task requiring a high amount of time 

(days or months) even for an expert in this field. Thus, the Large Language Models (LLM) are proposed to reduce the 

amount of time required for manual specification analysis. 

The experiment has been conducted on the specification of M-PHY v. 4.1 [4], which has been manually analyzed, 

parsed and labeled by a group of engineers. This dataset was used to fine-tune Generative Pre-trained Transformer 2 

(GPT-2) model from Hugging Face library [5]. The performance of the model has been also assessed on PURE 

dataset [6] to show that more specific data is more suitable for training a model. The proposed approach has been 

compared to generally trained GPT 3.5 model and has shown better ability to recognize the requirements. The trained 

model has been utilized as a part of automation system for technical documents analysis, which has been tested by 

labeling PCIe specification [3]. 

 

II.   PRIOR WORKS 

Since requirements engineering is one of the important steps of the technical systems development process, the idea 

of automating this time-consuming process is straightforward. The early application of natural language processing 

(NLP) methods has established in early 90-s [7]. The further advancement of these methods went side by side with 

advancement of machine learning (ML) algorithms and datasets development. Nowadays, there are three most popular 

datasets in this area, i.e., PROMISE [8], DOORS [9] and PURE [6] and the range of used ML techniques varies from 

the linear models [10] to the advanced deep learning methods [11]. The performance of the most successful methods 

on either precision or recall can achieve 0.90 [12]. However, the industrial success of these methods relies on domain-

specific rather than on a general-purpose datasets [13]. 

 

III.   DATASETS DESCRIPTION 

The in-house VIP for M-PHY 4.1 has been developed in order to improve the verification process. As a first stage 

of the development, the specification has been manually analyzed by a group of engineers in order to automate protocol 

verification, provide functional coverage, add error injection, and develop customizable test benches. All mentioned 

functions are based on the requirements, which have been extracted from the specification. 



 
 

Figure 1. The page 23 of MPHY 4.1 specification divided into text fragments and numbered from 196 to 214. 



The M-PHY v. 4.1 specification consists of 1130 text fragments, which have already been divided into sections in 

the specification file. The example of such text fragments is shown in Fig. 1. Based on manual analysis of specification 

contents, the engineers have extracted 332 requirements, the other 798 text fragments have been marked as non-

requirements. 

As a result, these text fragments have been processed, i.e., lowercased and the punctuation symbols have been 

removed. The part of the dataset, corresponding to the part of specification in Fig. 1, is shown in Fig. 2. On the other 

hand, there is a publicly available PURE dataset [6], which contains bigger number of text fragments (4145 are 

requirements and 3600 are non-requirements, 7745 in total). This dataset has more diverse data and a bigger number 

of records, but it is less specific and less suitable for the requirements recognition for the VIP design compared to the 

manually collected data from the hardware protocol specification. 

 
 

Figure 2. The part of the dataset corresponding to the page 23 of the M-PHY 4.1 specification. 

The quality of these datasets can be experimentally determined based on the machine learning model performance 

on a validation dataset. In this case, the validation dataset is also based on the M-PHY 4.1 specification data. The 

difference between the M-PHY 4.1 based training and validation datasets is in the way of parsing it into text fragments. 

The training dataset is parsed manually into big fragments of text, i.e., one or several paragraphs. The validation 

dataset is parsed in an automatic way into sentences in order to differ from the training dataset. 

The validation dataset also may include different kinds of parsing inaccuracies (e.g., additional symbols, words with 

missed/wrongly parsed letters, parts of the sentence located on the different pages and considered as two different 

sentences, etc.). As a result, despite containing approximately the same text content, the data significantly differs. In 

addition, the validation set is chosen in this way in order to be more closely aligned with the VIP design process rather 

than a general requirements recognition task. 

 

III.   LARGE LANGUAGE MODELS 

Large Language Models (LLM) [14] are machine learning models aiming understanding and generation of natural 

language. This can be achieved by using significant amounts of data in order to tune billions of internal parameters. 

These models can solve different natural language processing (NLP) tasks such as text classification, machine 

translation, question answering, automatic summarization, named-entity recognition, etc. [15]. One of the main LLMs 

nowadays are developed by Google (BERT and its modifications) [16], OpenAI (GPT-2, GPT-3, GPT-4) [17], 

Facebook (LLaMA, LLaMA2) [18]. An experimental study [12] has shown that the result of the requirements 

recognition task depends more on the quality of the data rather than on the used type of the LLM. The experiment 

carried out for this paper has also shown that the difference between BERT, GPT-2 and LLaMa models on the same 

dataset described above is not significant. Since GPT-2 model has shown a slightly better performance, the further 

experiments have been carried out with this model. 



GPT models are based on the similar structure, which is shown in Fig. 3. All GPT models include Embedding block, 

which encodes the words into vector of numbers, and Positional Encoding block, which considers the order of words 

in a text sequence. Dropout block is used to reduce the overfitting, i.e., the situation when the model performs well on 

training data and poorly on validation data. The main block of GPT models is the Transformer Layer, which is 

implemented based on two main ideas, i.e., classical multilayer perceptron and attention helping to recognize 

dependencies between words in the fragment of text. 

 
Figure 3. General structure of a GPT model. 

Normalization Layer is used to reduce the values of the weights in order to encode the weights with the smaller bit 

values (e.g., float16 instead of float32). Linear and Softmax layers form a classifier, which outputs the probabilities 

of being the next word corresponding to the words from the vocabulary. 

The difference between GPT models is mainly in the number of Transformer Layers, the number of parameters and 

the amount of data used for the training process. Unfortunately, pre-trained models newer than GPT-2 are not openly 

available and full training on hundreds of GBs of training data is a time and resource consuming process. Thus, GPT-

2 model is openly available and big enough to show good results on the considered requirements recognition task. 

 

IV.   MODEL TRAINING PROCESS 

The initial GPT-2 has been modified in order to adapt the model to the requirement classification task, i.e., binary 

classification task (class ‘0’ is a non-requirement and class ‘1’ is a requirement). Since the classes are imbalanced, 

accuracy metrics may be misleading. Therefore, the model performance has been assessed using Precision and Recall 

metrics. Precision metric shows the percentage of correctly classified text fragments among the found ones, i.e., if the 

model classifies a piece of text as a requirement, Precision characterizes the certainty in the correct result. Recall 

metric shows the percentage of correctly found requirements among the whole set of requirements, i.e., the model 

with high recall likely found all the requirements but can classify some of the non-requirements wrongly. The modified 

GPT-2 model has been trained using GPUs on both M-PHY and PURE datasets. The training has been performed as 

a fine-tuning, i.e., that most parameters have been frozen (untrainable) and only the weights in a few last layers have 

been updated within the training process. The model is entirely implemented in-house and does not depend on any 

external cloud services. 

The main parts of the source code for training are shown in Fig. 4. 

 



 
Figure 4. Main parts of the source code in Python for the model implementation. 
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Figure 5. Confusion matrices for M-PHY (a) and PURE (b) datasets. 



As a result, training time for this dataset is not significant (40-50 minutes). The accuracy on a training set has 

reached 0.995 and 0.873 on a validation set for M-PHY dataset. For the PURE dataset, the accuracy values on a 

training and validation sets are 0.982 and 0.659 correspondingly. The Precision and Recall on a validation set for M-

PHY dataset have reached 0.618 and 0.874, correspondingly. For the PURE dataset, the Precision and Recall values 

are 0.513 and 0.778, correspondingly. The confusion matrices for the M-PHY and PURE datasets are shown in Fig. 5. 

The confusion matrix shows the percentage (or actual number) of correct and incorrect classifications for all classes. 

For the binary classification, the (0, 0) cell shows the percentage of correct classifications for the class 0, the (0, 1) 

cell shows the percentage of incorrect classifications for the class 0, the (1, 0) cell shows the percentage of incorrect 

classifications for the class 1, the (1, 1) cell shows the percentage of correct classifications for the class 1. 

Comparing the results, the performance of the model is better on M-PHY specification-based dataset. This can be 

explained by a better specificity of this dataset compared to the more general PURE dataset. Since the accuracy on a 

validation set is significantly lower than on a training set, the model suffers from overfitting, i.e., the training set is 

not enough in terms of quantity and diversity to get a superior performance on different kinds of specifications. 

However, the model makes easier the process of labeling the requirements in the unknown specification, as it gives 

inputs for a quicker decision-making. Since the amount of data is not that big and the model is fine-tuned, the LLM 

does not suffer from inaccuracy and hallucinations. 

 

IV.   MODEL ASSESSMENT 

A. Comparison to ChatGPT 

The model has also been compared to the GPT 3.5 model [19], openly available as an API. The text (small part of 

PCIe-v.5 specification) shown in Fig. 6 has been processed in order to extract requirements using both the proposed 

model and the GPT 3.5 model (ChatGPT implementation). 

 
Figure 6. A small part of the PCIe v.5 specification and a question 

The GPT 3.5 model has generated an output shown in Fig. 7. 

The GPT 3.5 has ignored the sentences between "Due to the variety ..." and "To assist with ..." and has not marked 

them as "non-requirements". Also, the non-requirements 2, 3, 4 can be considered as requirements, which have been 

detected by the proposed model. As a result, the smaller model (GPT-2 in the proposed technique) completed this task 

better than the bigger model (GPT 3.5). Since the proposed model has been fine-tuned on the specific data related to 

the specifications, it shows better performance compared to the LLM trained on a general text data. 



 
Figure 7. The GPT 3.5 model response 

B. Model performance assessment on PCIe specification 

The PCIe v.5 specification has been parsed into sentences in a similar way. All the obtained text fragments have 

been fed into the model in inference mode. Each fragment has been assigned with a probability value of being a 

requirement, i.e., the higher the value, the higher the chance that the text fragment is a requirement. Then all the text 

fragments in PDF file corresponding to the classified once have been highlighted in PDF as follows: green – if the 

probability is higher than 0.6, yellow – if the probability is between 0.2 and 0.6, red – if the probability is lower than 

0.2. The example of this process is shown in Fig. 8. 

 

Figure 8. The results of the model on PCIe specification PDF file. 

The experiment on requirements identification for an experienced engineer has been also conducted. The estimation 

of the experienced verification engineer’s performance is around 0.95 in both, precision and recall. Therefore, the 

human can be more successful in requirements recognition, but needs more time to decide whether the text is a 

requirement or not. The engineer identified requirements within five pages of highlighted and usual (without a model 

pre-processing) PDF file. The task on the highlighted text has been completed within 20% less time than on the usual 

one. This experiment has a very limited number of tests and a limited number of participant and cannot be considered 

robust. Furthermore, some of the requirements can be contradictory or related to not implemented parts of the system. 

The engineer handles these situations better as he/she can discuss it with colleagues for the better requirement 

management. Despite, the proposed approach saves time and provides valuable inputs for an engineer to provide a 

better decision making.  



V.   IMPLEMENTATION 

The proposed model can be integrated into the automation system for technical documents analysis. The block 

diagram of the proposed automatic system is shown in Fig. 9. 

The system takes a technical document as an input and can operate in two modes: training and inference. In the 

training mode, the document should be labeled, i.e., the text within the document should be appended with labels. In 

the simplest case, the labels can be 0 (the piece of text does not have a required characteristic) or 1 (the piece of text 

has a required characteristic) or a probability value (the value from 0 to 1) meaning the likelihood of the text having 

the required characteristic (the higher value means the higher likelihood). In the experiment conducted in this paper, 

required characteristic is non-requirement (0) / requirement (1). In the inference mode, the document has no labels in 

order to allow the system to make a prediction whether the parts of the text within the document have required 

characteristic or not. The system in the inference mode also outputs a probability value for each part of the document 

as a prediction. 

The Parser block is used to analyze the content of the document (with or without labels) in order to convert the 

document into the list of text fragments (sentences, paragraphs, pages, etc.) with or without labels. Since documents 

often contain figures, the parser also extracts image data and converts it to the meaningful text data with or without 

labels and/or analyzes the contents of the image. The Data Preparator block connects text data with corresponding 

labels provided by the Parser block. If the system operates in inference mode, it just converts text data to the format 

expected by the Machine Learning Model (ML Model) block. The ML Model block loads the Model Weights from 

the internal system storage. In the training mode, the ML Model block executes the training process based on the 

dataset provided by the Data Preparator block. As a result, Model Weights should be updated within the 

optimization process in order to improve the quality of the ML Model, which is determined by the performance metric 

(accuracy, precision, recall, etc.). The updated weights are stored internally after the training process is over. In the 

inference mode, the ML Model block makes a prediction for each text fragment provided by the Data Preparator 

block. The result of the prediction can be a probability value (the value from 0 to 1) or a binary value (0 for the piece 

of text not having a required characteristic and 1 for the piece of text having a required characteristic). In the inference 

mode, the ML Model block passes the dataset (text fragments) with prediction results to the Documents Processor 

unit. This block converts source unlabeled document into a labeled document based on the source text data from the 

document and prediction results obtained from the ML Model block. The system can provide two types of outputs, 

i.e., in the training mode, it is an acknowledgement that the model weights are updated (1) or not (0) and in the 

inference mode, it is the labeled document, which is formed based on the initial document given as an input, and labels 

(prediction results) received from the ML Model. 

 
Figure 9. Block diagram of the automatic documents analysis system 

The proposed system is implemented as a software using Python programming language. The implementation of 

the Parser and the Documents Processor blocks are based on PyPDF2 library [20]. The Data Preparator block 



converts extracted text data into the data frames (e.g., Pandas [21]). The ML Model is implemented using 

HuggingFace library [22]. The Parser block also includes an image-to-text convertor based on visual attention [23]. 

 

VI.   CONCLUSION 

The M-PHY 4.1 specification has been analyzed by a group of engineers in order to design a VIP. This data has 

been also found useful in order to automate requirements analysis process. The training dataset has been formed based 

on M-PHY specification analysis and utilized for training the LLM (GPT-2). The model has shown promising results 

(Precision=0.618 and Recall=0.874) that allow to improve the process of verification IP development, as requirements 

identification becomes easier compared to the manual way of doing it. 

The proposed approach has been implemented as an automated documents analysis system, which can operate in 

training and inference modes. In the training mode, the system parses the contents of the documents and extracts 

labeled data for model training. In the inference mode, the system parses the document without labels and classifies 

its contents as requirements and non-requirements by providing a probability value for each text fragment. 

So far, the model cannot fully automate the process of requirement identification, but it improves the performance 

of this process. Moreover, the proposed approach can be also used in order to improve other aspects of VIP 

development, such as suggesting tests, test groups, checkers or other verification means for particular requirements.  
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