
Functional Safety Workflow of Internal IP (NPU) Within
Large Automotive IC Through Analysis and Emulation Usage

Likhopoy Andrey Kim Inhwan

Agenda

• Purpose

• Introduction

• NPU and SM Description

• FC Emulation Flow

• UU Analysis

• Test Scenarios Generation

• Results

• Conclusion

Purpose

• Reduce Time to Safety using a unified end to end integrated toolset
composing of analysis, simulation and emulation
• Target

• Verify DC to achieve ASIL B with fault injection test

• Tasks
• Use emulation flow with analysis and optimizations

• From functional verification to functional safety verification
• Environment migration

• Vector analysis and prioritizing

Introduction – Automotive SoC

https://semiconductor.samsung.com/us/processor/automotive-processor/exynos-auto-v920/

Introduction – Functional Safety

• Functional safety – absence of unreasonable risk due to hazards
caused by malfunctioning behavior of electronic systems (ISO 26262)

• HARA: Hazard Event (HE) assigned with ASIL based on Severity (S),
Exposure(E), Controllability (C)

• HE -> SG -> SR -> SM ASIL SPFM LFM PMHF

A Not relevant Not relevant < 1000 FIT

B ≥ 90 % ≥ 60 % < 100 FIT

C ≥ 97 % ≥ 80 % < 100 FIT

D ≥ 99 % ≥ 90 % < 10 FIT

SG Safety Goal

SR Safety Requirement

SM Safety Mechanism

CLOCK
MANAGER

POWER
MANAGER

SAFETY
ISLAND

MISC

CPU GPU

NPU DSP

AUDIO

VIDEO

ISP

DISPLAY

BUS

MEMORY

NPU Description – 1

PU1

MEM

CTRL PU0

CPU

WDT

CMNS

BL0 BL1

BL3 BL4

BL2

BLN

DRAM

BUS (PERI)

BL0 BLN

SRAM

PU2

BL0 BL1

CMNS

BL2 BLN

Typical automotive SoC NPU block diagram

NPU Description – 2

• Part of an automotive SoC

• Contributes to safe video sensing

• NPU provides fast and energy-efficient hardware accelerations for AI
and ML applications in computer vision, image processing and other
domains

• SoC includes Safety Island (and FMU)

• Target DC ≥ 91.21% for ASIL B

SM Description

• t
Type SM Part Description

emulation

SM1 CPU memory ECC
SM2 CPU logic STL

SM3 PU0/1/2, MEM, CTRL, PERI Self-test

SM4 CTRL, PERI (bus) Ext mem access

SM5 SFR of all parts SFR access
SM6 CTRL WDT
SM7 CTRL WDT SFR
SM8 MEM CRC

simulation

SM9 PU0 memory Parity
SM10 PU1 memory Parity
SM11 PU2 memory Parity
SM12 MEM cache memory Parity
SM13 MEM memory Parity

Expected DC Based on FIT Rate Distribution

Block
FIT rate

distribution (%)

Expected
DC (%)

(≥91.21%)

PU0 31.35 96

PU1 31.35 96

MEM 17.9 90

PU2 10.86 80

CTRL 2.04 60

PERI 6.48 80

Total 100 91.41

Part
FIT rate

distribution (%)

Expected
DC (%)
(≥60%)

CPU
memory

1.02 90

CPU logic 98.98 60

Total 100 60.31

SM3 (Self-test)

SM1, SM2 (CPU)

Fault Campaign Emulation Flow

1. Fault list (FIN) generation with SafetyScope

2. Define FDN

3. Veloce Compilation with FDN & FIN (from
FuSaDB)

4. Select vectors based on priority

5. Golden run

6. Test vector analysis with golden
waveform

7. Fault injection run

8. Result analysis (DO, DU, UU, UO)

Effective Platform for Complexity

• Fast run for complex design with safety mechanism
• Fast (depends on test scenario, up to ~500x compared to simulation)

• According to the complexity and runtime, verification platforms are
partitioned. FC simulation covers some subparts in NPU while Emulation FC
covers NPU according to bottom-up methods

Effective & Optimized FC Flow

• Fast FC = reduced fault injection run
• Compile (dead logic based on synthesis)

• Dead logic which are not directly read or doesn’t have any reader

• Vector Quality Check (Waveform analysis)

• Testing vector with waveforms to see toggle info for meaningful stuck at
fault

Effective Analysis Methodology

• Easy to debug
• Propagation path analysis (Cone-of-influence)

• To see only the path between fault injection net and fault detection net

• The analysis methodology
• To find out the debug point from golden run & fault injection run

Difficult Point in Fault Campaign

• Safe fault classification based on analysis
• Lower quality of vector can have UU

• Specific logic or SW may block the propagation by injected fault

• Engineer judgment is needed to define UU as Safe fault with
evidences

UU Analysis – Fast Triage

• Assumption
• The deviation by fault injection can be found

from waveform compare (golden vs check run)

• FDN is designed to receive all the propagation
from FIN

• The propagation can be gated out due to SW or
HW

• The latest deviation point in simulation time
will be analyzed

• The nearest deviation point to the FDN will be
analyzed

UU Analysis – Others

• Configuration check
• Configuration status with STL (Test vector for ARM core) can be analyzed with

HW – SW co-debugger (Codelink)

• Memory read check
• Read memory has an effect on fault propagation if the fault is injected on the

memory cell

Test Scenarios Generation – Conditions

• Test scenarios for FC must meet two conditions, both high quality and
short runtime
• High quality – above the sign-off level of test scenarios for functional

verification (coverage: functional != diagnostic) to achieve DC for ASIL B

• Short runtime – faster than test scenarios for functional verification
(redundancy) as to be used for actual field tests

• No simple method to make an ideal test scenarios

Test Scenarios Generation – Sequence
1. Host boots CPU

2. CPU activates WDT

3. CPU triggers CMNS

4. CMNS configures internal blocks

5. Internal blocks read, process, write
data

6. CMNS waits internal blocks end

7. CPU gets interrupts from CMNS

8. CPU triggers MEM to generate
CRC/reads internal CRC

9. CPU compares CRC with ref and
signals results (pass/fail)

10. CPU can get interrupt from WDT and
signal (hang) or stops WDT at all
operation end

PU1

MEM

CTRL PU0

CPU

WDT

CMNS

BL0 BL1

BL3 BL4

BL2

BLN

DRAM

BUS (PERI)

BL0 BLN

SRAM

PU2

BL0 BL1

CMNS

BL2 BLN

1

2

3 34 4

6 6

5 5

7 7

8

9

10

pass
alarm_fail

alarm_hang

start

Test Scenarios Generation – 1

• Test scenarios used in real SW not useful

• Test scenarios for functional verification as a starting point
• Rank by toggle coverage to remove duplicated

• Estimate if execution time is met

• Newly generated scenario detects both
• data mismatch (a)

• system hang (b)

Test Scenarios Generation – 2

• Data mismatch (a)
• Sensitive configuration of each sub-IP

• One – enabled, others – disabled (e.g. LUT chain)

• Special data patterns
• Intermediate values to prevent saturation due to clipping (e.g. MAC)

• MSB, LSB “0”/“1”, others “1”/”0”

• SFRs all “0”/all “1”

• System hang (b)
• Adjust WDT

DC Calculation – 1

• 𝐷𝐶⑨ =
𝐷𝑈②+𝐷𝑂③ +𝐶𝑜𝑚𝑝𝑖𝑙𝑒 𝐷𝑒𝑎𝑑 𝐿𝑜𝑔𝑖𝑐④+𝑁𝑜 𝑝𝑜𝑟𝑡 𝑖𝑛 𝑚𝑒𝑚⑤+𝐹𝐼𝑁=𝐹𝐷𝑁⑥ +𝐶𝑂𝐼⑦+𝑆𝑎𝑓𝑒⑧

𝐹𝑎𝑢𝑙𝑡 𝑙𝑖𝑠𝑡①

Dead
logic

UU

?SafeCOI

UODUDO

No
port

FIN=
FDN

Fault list

VQC, Inject

Analyze

1

23

4 5 6

7 8

Compile

• After each iteration one should
analyze UU
• Move to DO by generating new

test scenario where the fault
propagates to alarm net

• Move to Safe by confirming the
fault has no effect on observe net

DC Calculation – 2

• Analysis of NPU architecture, data flow and algorithms

• Move to DO if fault
• propagates

• Move to Safe if fault in
• Spec-out feature

• Debug feature

• Clock-gating disable feature

• Invalid range

• Performance feature

Results – Iterations

•
DO for iteration, %

Block
Valid

net, %
1 2 3 4 5

PU0 100 36.70 56.70 87.15 89.08 90.26

DO for iteration, %

Block
Valid

net, %
1 2 3 4 5 6 7 8

PU2 100 38.29 59.15 63.04 63.68 76.21 77.12 81.30 81.96

36.70

56.70

87.15 89.08 90.26

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5

D
O

, %

Iteration

PU0

38.29

59.15 63.04 63.68

76.21 77.12 81.30 81.96

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8

D
O

, %

Iteration

PU2

Results – SM3 (Self-test)

• t

FC steps Result analysis Result

FuSa DB Compile FI run Compile (optimized) Formal Expert Expected Final

Block
Fault list

①

Valid net
(after

Compile)

DU
②

DO
③

UU (incl.
VQC)

UO
Dead
Logic
④

No
port

in
mem
⑤

FIN
=

FDN
⑥

COI
⑦

Safe
⑧

FIT rate
distr.
(%)

Exp.
DC (%)

DC (%)
⑨

PU0 4694 4220 0 3827 281 132 438 16 0 19 227 31.35 96 96.44

PU1 4694 4220 0 3827 282 131 438 16 0 19 227 31.35 96 96.44

MEM 4688 3472 0 2392 1022 58 1148 0 0 78 316 17.9 90 83.92

PU2 4658 4064 0 3331 711 22 522 72 0 21 80 10.86 80 86.43

CTRL 4582 2050 6 235 1716 93 1430 1102 0 131 0 2.04 60 63.38

PERI 4576 3058 0 2151 895 12 1518 0 0 75 0 6.48 80 81.82

Total 100 91.41 91.49

Results – SM1, SM2 (CPU)

• t

FC steps Result analysis Result

FuSa DB Compile FI run Compile (optimized) Formal Expert Expected Final

Part
Fault list

①

Valid net
(after

Compile)

DU
②

DO
③

UU (incl.
VQC)

UO
Dead
Logic
④

No
port

in
mem
⑤

FIN
=

FDN
⑥

COI
⑦

Safe
⑧

FIT rate
distr.
(%)

Exp.
DC (%)

DC (%)
⑨

CPU memory 4696 4642 320 3835 486 1 54 0 0 0 0 1.02 90 89.63

CPU logic 4554 4174 0 2303 1818 53 364 0 16 94 0 98.98 60 60.98

Total 100 60.31 61.13

Conclusion

• Functional safety workflow of NPU IP with SW-based SMs

• Internal blocks and related SMs selection based on FIT rate
distribution

• FC process including fault injection run by emulation

• Debug methodology for efficient UU analysis
• DO (test scenarios), Safe (expert judgement)

• Target DC score of 91.21% necessary to meet ASIL B metrics

• Future work – further optimization of test scenario runtime for SW
safety verification

Questions

	Slide 1: Functional Safety Workflow of Internal IP (NPU) Within Large Automotive IC Through Analysis and Emulation Usage
	Slide 2: Agenda
	Slide 3: Purpose
	Slide 4: Introduction – Automotive SoC
	Slide 5: Introduction – Functional Safety
	Slide 6: NPU Description – 1
	Slide 7: NPU Description – 2
	Slide 8: SM Description
	Slide 9: Expected DC Based on FIT Rate Distribution
	Slide 10: Fault Campaign Emulation Flow
	Slide 11: Effective Platform for Complexity
	Slide 12: Effective & Optimized FC Flow
	Slide 13: Effective Analysis Methodology
	Slide 14: Difficult Point in Fault Campaign
	Slide 15: UU Analysis – Fast Triage
	Slide 16: UU Analysis – Others
	Slide 17: Test Scenarios Generation – Conditions
	Slide 18: Test Scenarios Generation – Sequence
	Slide 19: Test Scenarios Generation – 1
	Slide 20: Test Scenarios Generation – 2
	Slide 21: DC Calculation – 1
	Slide 22: DC Calculation – 2
	Slide 23: Results – Iterations
	Slide 24: Results – SM3 (Self-test)
	Slide 25: Results – SM1, SM2 (CPU)
	Slide 26: Conclusion
	Slide 27: Questions

