
Migrating from UVM to
UVM-AMS

Accellera UVM-AMS Working Group
Tom Fitzpatrick, Siemens EDA, UVM-AMS WG Chair

Abhijit Madhu Kumar, Cadence Design Systems
© Accellera Systems Initiative 1

UVM-AMS WG Member Companies
• Cadence
• NXP
• Qualcomm
• Renesas
• Siemens
• Synopsys
• Texas Instruments

What Are We Trying to Do?
• Define a way to extend UVM to AMS/DMS

• Modular, reusable testbench components
• Sequence-based stimulus
• Take advantage of UVM infrastructure as much as possible

• Reuse as much UVM as possible as DUT is refined from digital to AMS
• Use extension/factory as much as possible
• Support UVM architecture for DMS/AMS DUT from the start

• Define standard architecture for D/AMS interaction
• Minimize traffic across boundary
• Enable development of D/AMS VIP libraries & ecosystem

Top

uvm_agent (UVC)

in
tf

driver

monitor

sequencer

config in
tf

DUT

registers

Classical UVM Example

Terminology
• Analog Mixed-Signal (AMS) simulation and verification refers to

systems that can simulate/verify analog/mixed-signal designs as a co-
simulation of digital + analog (electrical) solvers

• Digital Mixed-Signal (DMS) simulation and verification refers to
systems that can simulate/verify analog/mixed-signal designs within a
discrete event-driven solver as digital (logic) and real number models

Requirements
• Minimal changes to UVC to add AMS capabilities (driver, monitor, sequence

item) that can be applied using set_type_override_by_type
• Define analog behavior based on a set of parameters defined in a sequence

item and generate that analog signal using an analog resource (MS Bridge)
• Measure the properties of the analog signal, return them to a monitor, and

package those properties into a sequence item
• Drive and monitor configurations, controlled by dedicated sequence items

and support easy integration into multi-channel test sequences
• Controls can also be set by way of constraints for pre-run configurations.
• Collect/check coverage in the monitor based on property values returned

from analog resource or add checkers in analog resource

Now the Real Work Begins
Abhijit Madhu Kumar, Cadence Design Systems

Generating/Driving Continuous Analog Signals
• An analog signal that is not simple DC or a slow changing signal,

needs to be a periodic waveform like a sine wave or a sawtooth, or
some composition of such sources.

• For example, a signal generator for a sine wave can
be controlled by four control values determining
the freq(λ), phase(Ф), amplitude(A), and DC bias(ν)
of the generated signal.

• The properties of the analog signal being driven
are controlled by real values, generated by the sequencer

• A UVM sequence_item contains fields for all the control parameters.
• The driver converts the transaction to a setting for the signal

generator.

uvm_ams_agent (UVC)

in
tf

driver

monitor

sequencer

config

MS Bridge

DUT

in
tf

Overall UVM-AMS Methodology

• MS Bridge is the proposed layer that sits between the UVC and the (A)MS DUT
• MS Bridge is a SV module that consists of a proxy API, SV interface, and an analog resource module
• The ‘proxy’ is an API that conveys analog attributes between the UVC and the MS Bridge
• The SV ‘intf’ passes digital/discrete signal values (logic, real, nettype/RNM) between UVC and MS Bridge
• Both ‘proxy’ and ‘intf’ can be used together or individually
• The analog resource (SV, Verilog or Verilog-AMS)

• Communication layer between intf/proxy and the ports of DUT
• Uses the analog attributes from proxy to generate continuously changing values (e.g. ramping

voltage supply, electrically modeling drive strengths or cap/res loading, etc.)

analog resource

pr
ox

y

pr
ox

y

DUT

UVM-AMS Analog Resource

• MS testbench may require the behavior and presence of analog components that
a typical UVM-RTL testbench could not include. These could be:

• Capacitors, Resistors, Inductors, Diodes, current/voltage sources etc. Or a complex passive
network for multiple DUT pins.

• A piece of Verilog-AMS code
• Such components will be used to model the analog behavior of PADs, lossy transmission

lines, loads/impedances, or any other voltage/current conditioning required to accurately
model the signals connecting to the ports of DUT

• Those components can be placed inside the analog resource to be controlled by proxy.

MS Bridge

DUT

uvm_ams_agent (UVC)

driver

monitor

sequencer

config

pr
ox

y

pr
ox

y analog resource

in
tf

in
tf

UVM-AMS Analog Resource

• Proxy is an API used to interact with analog resource to perform the following
• Push / pull electrical values such as voltage, current, component values.
• Event generation
• Arbitrary sampling of a continuous signal to update a variable in the proxy.

• The analog resource would have the same number of ports as the DUT for a one-to-one
connectivity between the ports of analog resource and the DUT

• The API between the bridge and the analog resource must support Verilog-AMS language
constructs to support all possible analog resource views (VAMS, SV, etc.)

MS Bridge

DUT

uvm_ams_agent (UVC)

driver

monitor

sequencer

config

pr
ox

y

pr
ox

y analog resource

in
tf

in
tf

UVC package
virtual class pga_bridge_proxy;
...
pure virtual function void config_wave(…);

...
endclass

module top;
…
osc_bridge osc_bridge(.clk_outp, .clk_outn, .clk_in);

…
initial begin
uvm_config_db#(pga_bridge_proxy)::set(null,"*freq_adpt*","bridge_proxy",top.osc_bridge.bridge_proxy);
run_test();

end
endmodule

module pga_bridge(…);
…
pga_bridge_core #(…) core (…); // AMS model
…
class proxy extends pga_bridge_proxy;
function void config_wave(input real ampl, bias, phase, freq);
core.ampl_in = ampl;
core.bias_in = bias;
core.phase_in = phase;
core.freq_in = freq;

endfunction
endclass

proxy bridge_proxy;
…
endmodule

Implement

UVM config setting

Proxy Template (API)
Proxy instance in MS Bridge module

Passes values to analog resource
to “program” waveform

Instance of analog
resource

Proxy “hook-up”

Push

Pull

Monitored

Proxy  Analog Resource
MS Bridge

class proxy … ;
function void config_wave(…);

core.ampl_in = ampl;
core.bias_in = bias;
core.phase_in = phase;
core.freq_in = freq;

endfunction

function void get_measures(...);
ampl = core.ampl_out;
bias = core.bias_out;
phase = core.phase_out;
freq = core.freq_out;

endfunction

real min, max;
endclass

pga_bridge_core (...);
...
real ampl_in;
real bias_in;
real phase_in;
real freq_in;

analog begin
vsin = (ampl_in * sin(`M_TWO_PI * freq_in * $abstime);
...

end

real ampl_out;
real bias_out;
real freq_out;
real phase_out;

Vsig = V(sig);
if (Vsig > max_a)

max_a = Vsig;
else if (Vsig < min_a)

min_a = Vsig;

always_comb begin
bridge_proxy.min = core.min_a;
bridge_proxy.max = core.max_a;

end

Interpolated value

If target is different, it’s seen
as a D2A event

Analog generates update

Frequency_Adapter DUT

4:1

fx2

f/2 f/2

clk_in
clkout_p

clkout_n

sel_mux[1:0]
en_mux

ampl_adj[2]

sr_adj[2]

pw_adj[8]

UVM TB – add analog capability

Frequency_Adapter
clk_in

Registers

clkout_p
clkout_n

Reg_bus

DUT
reg_if

osc_clk osc_clk

Freq_adapter Waveforms
Digital

VAMS

Digital clks

Analog clks

Model of Frequency Adapter Ports in SV

module freq_adapter (

output logic CLKOUT_P,CLKOUT_N; // differential output

input logic CLK_IN; // clock input

input logic en_mux, [1:0] sel_mux; // register control

input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj;

);

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

Top

in
tf

DUT (RNM)

1 0 1 0 1 0 1 0

Model of Frequency Adapter Ports in SV RNM

module freq_adapter import rnm_pkg::*; (

output real_net CLKOUT_P,CLKOUT_N; // differential output

input real_net CLK_IN; // clock input

input logic en_mux, [1:0] sel_mux; // register control

input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj;

);

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

Top

DUT (RNM)MS Bridge analog resource

CM
CM
CM

in
tf

1 0 1 0 5V 0V 5V 0V

RNM uses event solver so just need
to convert logic to real voltage

Model of Frequency Adapter Ports in VAMS

module freq_adapter (CLKOUT_P,CLKOUT_N,CLK_IN,en_mux,sel_mux,pw_adj,sr_adj,ampl_adj);

output CLKOUT_P,CLKOUT_N; electrical CLKOUT_P,CLKOUT_N; // differential output

input CLK_IN; electrical CLK_IN; // clock input

input wire [2:0] en_mux, [1:0] sel_mux; // register control

input [7:0] pw_adj, [1:0] sr_adj, ampl_adj; // digital control voltage

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

Top

DUT (RNM)MS Bridge analog resource

CM
CM
CM

in
tf

1 0 1 0 5V 0V 5V 0V

electrical uses analog solver
that takes into account VIR

Analog Resource for SV-RNM/VAMS
Option 1
• Automatically inserted Connect Modules (CM) converts logic signal

values to SV-RNM or electrical equivalents (depending on the DUT)
• Simple to use but many non-standard requirements such as supply

connection, DRS, etc.
• No fine control on the analog resources ‘electrical’ interface
• No changes required to UVM driver

Not recommended
where control

over critical analog
signals needed

Top

DUT (RNM)MS Bridge analog resource

CM
CM
CM

in
tf

Analog Resource for VAMS
Option 2
• User generated code for L2E converts logic signal values to electrical

equivalents
• Proxy used to pass supply value used by analog resource to determine voltage

value of logic 1
• Same UVC/MS Bridge with VAMS analog resource for electrical signals and

RNM analog resource for RNM signals
• Requires new functionality in UVM driver to access proxy and generate values

Top

DUT (RNM)analog resource

L2E
L2E
L2Ein

tf
pr

ox
y

Recommended for
protocol signals

such as I2C

Analog Resource for VAMS
Option 3
• Analog resource uses proxy attributes to generate analog signal

algorithmically
• Proxy used to pass attributes that define type and shape of analog signal
• Same UVC/MS Bridge with VAMS analog resource for electrical signals and

RNM analog resource for RNM signals
• Requires override of UVM driver and sequence item to change functionality

from driving signals to passing values through proxy

Top

DUT (RNM)analog resource
in

tf
pr

ox
y

This is the option
used for the demo

Recommended for
continuously

changing signals
such as sine wave

Example Walk-through
UVM digital to UVM-AMS

Steps
• Create Bridge module

• Contains Analog Resource, Interface, and Proxy (optional)

• Extend classes for Driver, Monitor, and Sequence Item
• Use set_type_override_by_type to use extended classes

• Create Proxy class if needed

analog_clk_bridge

analog_clk_driver
UVM UVM-AMS

analog_clk_trans
UVM UVM-AMS

analog_clk_tb
UVM UVM-AMS

Demo

UVM Messaging

Messages for Debug and Error Reporting
• Debugging activity inside a large environment with many UVCs is critical.
• Need to report:

• Errors
• Debug
• Progress

• Messages need to be categorized via severity:
• Fatal, Error, Warning, Info

• Need to link actions with messages
• Stop simulation on fatal or after four errors
• Summarize number of messages reported

• Need a different mechanism than simulator messages to avoid filtering
effects

UVM Messaging System

UVM Messaging from Analog Resource
• UVM Reporting macros not supported in Verilog-AMS modules.
• Take advantage of up-scoping to provide solution. (1364-2001 LRM)
• `include "uvm_ams.vamsh“ in Verilog-AMS file (analog resource)

• localparams to define UVM Verbosity levels as integers to match UVM enum
• `include "uvm_ams.svh“ in SV file (MS Bridge)

• Void functions that wrap `uvm_*() reporting macros into functions of the same name
• Within a digital block of a Verilog-AMS file users call;

uvm_[info|warning|error|fatal](…)
• Up scoping means it find the function in the MS Bridge file

• Within analog block, many solutions so here is one (calling of digital
functions not allowed)

• Set string value and toggle integer
• Use absdelta to trigger on toggle and read string to call up-scoping function

UVM Message – Analog block

• Hold UVM component hierarchy path string in proxy class via
get_full_name()

• Use *_context reporting macros to direct message to relevant component

localparam string uvm_path = $sformat(uvm_path,”%m”);
localparam string message = $sformat("The Current is above the threshold @ %eA",I_PLUS);
uvm_info(P__TYPE,message,UVM_MEDIUM,uvm_path);

function void uvm_info(string id, string message, int verbosity_level, string uvm_path);
`uvm_info_context(id,message,uvm_verbosity'(verbosity_level),uvm_root::get().find(uvm_path))
endfunction: uvm_info

VAMS

SV Bridge

UVM_INFO ../../include/uvm_ams.svh(26) @ 52001.098068ns: uvm_test_top.env.v_agent [i_bridge]
The Current is above the threshold @ 1.178812e+00A

Conclusions
• There is a need for more advanced, standard methodologies for

scalable, reusable and metric-driven mixed-signal (AMS/DMS)
verification

• The UVM-AMS proposal addresses the gaps in current verification
methodology standards

• Extend UVM class-based approach to seamlessly support the module-
based approach (MS Bridge) needed for mixed-signal verification

• Targeting analog/mixed-signal contents (RNM, electrical/SPICE)
• Application and extension of existing UVM concepts and components

• Sequencer, Driver, Monitor
• MS Bridge / Analog resources
• UVM Messaging System

Questions?

	Migrating from UVM to UVM-AMS
	UVM-AMS WG Member Companies
	What Are We Trying to Do?
	Classical UVM Example
	Terminology
	Requirements
	Now the Real Work Begins
	Generating/Driving Continuous Analog Signals
	Overall UVM-AMS Methodology
	UVM-AMS Analog Resource
	UVM-AMS Analog Resource
	Proxy “hook-up”
	Proxy  Analog Resource
	Frequency_Adapter DUT
	UVM TB – add analog capability
	Freq_adapter Waveforms
	Model of Frequency Adapter Ports in SV
	Model of Frequency Adapter Ports in SV RNM
	Model of Frequency Adapter Ports in VAMS
	Analog Resource for SV-RNM/VAMS�Option 1
	Analog Resource for VAMS�Option 2
	Analog Resource for VAMS�Option 3
	Example Walk-through
	Steps
	analog_clk_bridge
	analog_clk_driver
	analog_clk_trans
	analog_clk_tb
	Demo
	UVM Messaging
	Messages for Debug and Error Reporting
	UVM Messaging System
	UVM Messaging from Analog Resource
	UVM Message – Analog block
	Conclusions
	Questions?

