(2023

DESIGN AND VERIFICATION™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Migrating from UVM to
SAVAVIETAYIVIS

Accellera UVM-AMS Working Group

Tom Fitzpatrick, Siemens EDA, UVM-AMS WG Chair ace/era
Abhijit Madhu Kumar, Cadence Design Systems _

SYSTEMS INITIATIVE

© Accellera Systems Initiative



UVM-AMS WG Member Companies

* Cadence

* NXP

* Qualcomm

* Renesas

* Siemens

* Synopsys

* Texas Instruments

()

SYSTEMS INITIATIVE



What Are We Trying to Do?

* Define a way to extend UVM to AMS/DMS

 Modular, reusable testbench components
* Sequence-based stimulus
* Take advantage of UVM infrastructure as much as possible

* Reuse as much UVM as possible as DUT is refined from digital to AMS

e Use extension/factory as much as possible
e Support UVM architecture for DMS/AMS DUT from the start

* Define standard architecture for D/AMS interaction
* Minimize traffic across boundary
* Enable development of D/AMS VIP libraries & ecosystem

()

SYSTEMS INITIATIVE



Classical UVM Example

Top

uvm_agent (UVC)

sequencer driver g

. | |
config monitor |« -

accellery -

SYSTEMS INITIATIVE



Terminology

* Analog Mixed-Signal (AMS) simulation and verification refers to
systems that can simulate/verify analog/mixed-signal designs as a co-
simulation of digital + analog (electrical) solvers

* Digital Mixed-Signal (DMS) simulation and verification refers to
systems that can simulate/verify analog/mixed-signal designs within a
discrete event-driven solver as digital (logic) and real number models

()

SYSTEMS INITIATIVE



Requirements

* Minimal changes to UVC to add AMS capabilities (driver, monitor, sequence
item) that can be applied using set_type override by type

* Define analog behavior based on a set of parameters defined in a sequence
item and generate that analog signal using an analog resource (MS Bridge)

* Measure the properties of the analog signal, return them to a monitor, and
package those properties into a sequence item

* Drive and monitor configurations, controlled by dedicated sequence items
and support easy integration into multi-channel test sequences

e Controls can also be set by way of constraints for pre-run configurations.

* Collect/check coverage in the monitor based on property values returned
from analog resource or add checkers in analog resource

()

SYSTEMS INITIATIVE



(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

Now the Real Work Begins

Abhijit Madhu Kumar, Cadence Design Systems

SYSTEMS INITIATIVE




Generating/Driving Continuous Analog Signals

* An analog signal that is not simple DC or a slow changing signal,
needs to be a periodic waveform like a sine wave or a sawtooth, or
some composition of such sources.

* For example, a signal generator for a sine wave can |
be controlled by four control values determining
the freq(A), phase(®), amplitude(A), and DC blas(v)

of the generated signal.

* The properties of the analog signal being driven —
are controlled by real values, generated by the sequencer

* A UVM sequence_item contains fields for all the control parameters.

* The driver converts the transaction to a setting for the signal
generator.

2023

accelleray - - NS BVETN

i ' | ' uniTED STATES



Overall UVYM-AMS Methodology

uvm_ams_agent (UVC) MS Bridge
sequencer driver
config monitor

* MS Bridge is the proposed layer that sits between the UVC and the (A)MS DUT

 MS Bridge is a SV module that consists of a proxy API, SV interface, and an analog resource module

* The ‘proxy’ is an API that conveys analog attributes between the UVC and the MS Bridge

* The SV ‘intf’ passes digital/discrete signal values (logic, real, nettype/RNM) between UVC and MS Bridge
* Both ‘proxy’ and ‘intf’ can be used together or individually

* The analog resource (SV, Verilog or Verilog-AMS)

* Communication layer between intf/proxy and the ports of DUT

* Uses the analog attributes from proxy to generate continuously changing values (e.g. ramping
voltage supply, electrically modeling drive strengths or cap/res loading, etc.)

accellera . . DESIGN AND VERIFICATION™
. CONFEREMNCE AND EXHIBITION




UVM-AMS Analog Resource

uvm_ams_agent (UVC) MS Bridge

sequencer driver héﬁ ______ E analO_[g>|_resource
——
" M
config monitor [+l ~fepommmn ,E_ V)

* MS testbench may require the behavior and presence of analog components that
a typical UVM-RTL testbench could not include. These could be:

» Capacitors, Resistors, Inductors, Diodes, current/voltage sources etc. Or a complex passive
network for multiple DUT pins.

* A piece of Verilog-AMS code

* Such comO'oo_nents will be used to model the analog behavior of PADs, lossy transmission
lines, loads/impedances, or any other voltage/current conditioning required to accurately
model the signals connecting to the ports of DUT

* Those components can be placed inside the analog resource to be controlled by proxy.

2023

- .
accellem . - DESIGN AND VERIFICATION™
v el o0 CONFERENCE AND E
.

SYSTEMS INITIATIVE



UVM-AMS Analog Resource

uvm_ams_agent (UVC) MS Bridge

sequencer driver «E« ______ .,E, analo_[g>|_resource
——
i M
config monitor ~ .<- ______ ,E_ V)

* Proxy is an APl used to interact with analog resource to perform the following
* Push / pull electrical values such as voltage, current, component values.
* Event generation
* Arbitrary sampling of a continuous signal to update a variable in the proxy.

* The analog resource would have the same number of ports as the DUT for a one-to-one
connectivity between the ports of analog resource and the DUT

* The APl between the bridge and the analog resource must support Verilog-AMS language
constructs to support all possible analog resource views (VAMS, SV, etc.)

a

A

2023

. . . . .
acce’ler a . . DESIGMN AMD VERIFICATIOMN™
i i CONFERENCE AND EXHIBITION

i ' " | UNITED STATES



Proxy “hook-up”

Proxy instance in MS Bridge module
Proxy Template (API)

module pga bridge(..);

UVC package Instance of analog
virtual class pga bridge proxy; pga bridge core #(..) core (..); // AMS mode] -C——————————
- - T - resource
pure virtual function void config wave (..); class proxy extends pga bridge proxy;
function void config wave (input real ampl, bias, phase, freq);
endclass core.ampl in = ampl;
core.bias in = bias;
core.phase in = phase;
Implement core.freq in = freq;
endfunction
endclass
Passes values to analog resource
proxy bridge proxy; to “program” waveform
endmodule

UVM config setting

module top;
osc_bridge osc bridge(.clk outp, .clk outn, .clk in);

initial begin
uvm_config db# (pga bridge proxy) ::set (null,"*freq adpt*", "bridge proxy",top.osc bridge.bridge proxy);
run_test();
end
endmodule

2023

qecellersy - ) N

i ' ' ' UNITED STATES



Proxy € -2 Analog Resource

MS Bridge

class proxy .. ;

function void config wave(..);

core.ampl_in
core.bias_in
core.phase_in
core.freqg_in
endfunction

function void get_measures(...);
core.ampl out;
core.bias_out;

core.phase_out;
core.freq_out;

ampl
bias
phase
freq
endfunction

real min, max;
endclass ‘\\

ampl; /////”_“
bias;

phase;
freq;

N

always_comb begin
bridge_proxy.min

bridge_proxy.max

end

core.min_a;

core.max_a,; \_/

pga_bridge core (...);

real ampl_in;
3 real bias_in;
real phase_in;
real freq_in;

analog begin
vsin = (ampl_in * sin("M_TWO_PI * freq_in * $abstime);

end

real ampl out;
real bias_out;
real freq_out;
real phase_out;

Vsig = V(sig);

if (Vsig > max_a)
max_a = Vsig;

L~ else if (Vsig < min_a)

min_a = Vsig;

acceliera) -

SYSTEMS INITIATIVE

DESIGN AND \g;l;m'"

DVCON

CONFERENCE AMND EXHIBITION




Frequency_Adapter DUT

dj[8
pw_adj[8] ampl_adj[2]

clkout_p

clk in

clkout_n

.

en_mux
sel_mux[1:0]

SYSTEMS INITIATIVE



UVM TB — add analog capability

Reg bus
reg_if p

clk_in

clkout_p

osc_clk

@i -

SYSTEMS INITIATIVE

Frequency_ Adapter

clkout_n

4 osc _clk



Freq adapter Waveforms

« .
I [0 Baseline v=63,778ps -
D I g Ita I EF Cursor-Baseline v= 40, Baseline = 63,778ps )
[Time# = 104,208ps

Name Cursor |70.,000ps |80.000ps [100,000ps

FREQ_GENERATOR Driver" req .
" freg *h00000271 "hO00003c4 Ifﬁqwhwmwm

| freq="h000003c4 |£:aq=‘h0[¢ﬂ[¢ﬂj\4 |£req=‘hbﬂ[¥ﬂ[’ic4

. freq 4 as0 Y es00
Driver_registers_Packet req
'ho4
'ho4
0

1

G-l ampl_aci[1 0]

i pw_aci7 0]
il sel_mux(l 0]
i sr_adi[1:0]

o ck_in 0 L I |  — IS 111/ — E— |11 —| A 1111 S ]
I ckout_n Tl Il M L A I T
T A

= clkout_p

D Baseline - 90,049,0687
[TimeA = 100,000,000(14)fs
e - Tl 20 .000,0007s 100,000,000
S A ————— | Pamalog_clook_seq “Nanalog_clock_seq =7 alog_clock = —enalog_clock seq
= data_type " ARALOG_CLOCKM ' .
0 087452
0/159236

110,000,000fs 120,000,0007s 130,000,000fs 140,000,0007s 150,000,000fs
(anslog_clock seq - - Yanalog_clock_sea

clook_seq

3.92302e+09

0
0.614374

_fr
= dluration *h0000001D

B reisters_t _sealdepth == 1]] " 7 T — (7T
= addr . X B g aadr= hOE

= wdata wdatas'hos

“en

=ren

o _ Analog clks

il ampl_aci[1 0]
i pw_adi7:0]
=i sel_rnux[1 0]
oyl sr_adi[1.0]

60705

T — , ~ H Hﬂﬂ ‘ﬁ mﬂﬂﬂﬁ Mﬂﬂ M mmm ﬂjwmm MUWW W'Mﬂ ﬂjﬂmﬂm M Mwmmﬂnnnnmmnmuwwumnnmmmmmu'm
- \ [ rneear

- ck_in

NENREER

Ta

A 0 O I

4
o

A clkout_n

S v

= clkout_p
i)

e

. N o) 2023

DESIGN AND VERIFICATION™

86'6'8!'3 g Q- - - DVCON

. .
- & . . e o = . 8 CONFERENCE AND EXHIBITION
. - .

o | UniTep sTaTES




Model of Frequency Adapter Ports in SV

module freq adapter (
output logic CLKOUT P,CLKOUT N; // differential output
input logic CLK IN; // clock input
input logic en mux, [1:0] sel mux; // register control

input logic [7:0] pw adj, [1:0] sr adj, ampl adj;

uvm_agent (UVC)

sequencer driver |[<=

config monitor <=

1]oJ1]0 “1]0[1]0

- B Q- | 2023
accellera) - - DVCON

SYSTEMS INITIATIVE

CONFERENCE AMND EXHIBITION




Model of Frequency Adapter Ports in SV RNM

module freq adapter import rnm pkg::*; (
output real net CLKOUT P,CLKOUT N; // differential output

input

K IN; // clock input
input logic en mdy, [1:0] sel mux; // register control

input logic [7:0] [1:0] sr adj, ampl adj;

uvm_agent (UVC) \&{

sequencer driver [«

analog resource

config monitor |«

RNM uses event solver so just need
to convert logic to real voltage

. E T 023
ﬂﬂﬂe/ler a , VT ) : EGNVAN? VEFEIF_ICATION

i : ' | UNITED STATES



Model of Frequency Adapter Ports in VAMS

module freq adapter

output CLKOUT P,CLKOUT N; electrical CLKOUT P,CLKOUT N;

input CLK IN;

input wire [2:0] en mux,

input [7:0] pw adj,

:0]
[1:0]

uvm_agent (UVC)

sequencer driver

config monitor

CLK IN;

adj,

sel mux;

ampl adj;

//
//
//
//

(CLKOUT P,CLKOUT N,CLK IN,en mux,sel mux,pw adj,sr adj,ampl adj);

differential output
clock input
register control

digital control voltage

TON

acceller?)

SYSTEMS INITIATIVE

MS Bridge,
B

analog resource

N

electrical uses analog solver
that takes into account VIR

ToTlo

‘W

2023

DESIGN AND VERIFICATION™

CONFERENCE AMND EXHIBITION



Analog Resource for SV-RNM/VAMS

Option 1

* Automatically inserted Connect Modules (CM) converts logic signal
values to SV-RNM or electrical equivalents (depending on the DUT)

* Simple to use but many non-standard requirements such as supply
connection, DRS, etc.

* No fine control on the analog resources ‘electrical’ interface
* No changes required to UVM driver

Not recommended
where control

Top

MS Bridge analog resource over critical analog

E ‘<m; signals needed

SYSTEMS INITIATIVE



Analog Resource for VAMS

Option 2

e User generated code for L2E converts logic signal values to electrical
equivalents

* Proxy used to pass supply value used by analog resource to determine voltage
value of logic 1

* Same UVC/MS Bridge with VAMS analog resource for electrical signals and
RNM analog resource for RNM signals

e Requires new functionality in UVM driver to access proxy and generate values

Top

‘*&nalog resource
Q\\\\\\
N \\\
\\ N

Recommended for
protocol signals
such as 12C

SYSTEMS INITIATIVE



Analog Resource for VAMS
Option 3
* Analog resource uses proxy attributes to generate analog signal
algorithmically
* Proxy used to pass attributes that define type and shape of analog signal

* Same UVC/MS Bridge with VAMS analog resource for electrical signals and
RNM analog resource for RNM signals

e Requires override of UVM driver and sequence item to change functionality
from driving signals to passing values through proxy

Top

Recommended for
E ®nalog resource continuously
E NS

X changing signals
WV e such as sine wave

This is the option
used for the demo

SYSTEMS INITIATIVE



(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

Example Walk-through

UVM digital to UVM-AMS

SYSTEMS INITIATIVE




Steps

* Create Bridge module
* Contains Analog Resource, Interface, and Proxy (optional)

e Extend classes for Driver, Monitor, and Sequence Item
* Use set_type override by type to use extended classes

* Create Proxy class if needed

()

SYSTEMS INITIATIVE



oW b Wi

PNON = b e b e e e e
O WO u A WKNM=ODW

22

N
w

24

analog clk bridge

module osc bridge ( input osc clk, output osc clk p, osc clk n
import osc pkg::*;
class proxy extends osc bridge proxy;
function void config wave(input real ampl, bias, freq, ena
core.ampl in = ampl;
core.bias in = bias;
core.freq in = freq;
core.enable = enable;

endfunction
//Signals to send to core sampler
real delay in;
int duration in;
bit sampling do;
//Measurements to send up reported values to monitor
real sampling done;
real ampl out;
real bias out;
real freq out;
endclass

proxy bridge proxy = new();

acceller?)

SYSTEMS INITIATIVE

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

always @(bridge proxy.de
core.delay in bri
core.duration in = bri
core.sampling do = bri
end

always comb begin
bridge proxy.sampling
bridge proxy.ampl out
bridge proxy.bias out
bridge proxy.freq out
end

osc _bridge core #(.diff_
.0sc_clk(osc clk),
.0sc _clk pl(osc clk p),
.0sc_clk n(osc clk n)
b

A

45 Bndmodule

lay in, bridge proxy.duration in,
dge proxy.delay in;

dge proxy.duration in;

dge proxy.sampling do;

done = core.sampling done;
core.ampl out;
core.bias out;
core.freq out;

sel(diff _sel)) core |

2023

DESIGN AND VERIFICATION™

DVLCI

CONFERENCE AMND EXHIBITION



analog clk driver
UVM UVM-AMS

7 class osc driver extends uvm driver #(osc transaction); 98 class osc ms driver extends osc driver;

8 // The virtual interface used to drive and view HDL signals. 99 protected osc bridge proxy bridge proxy;

9 virtual interface osc if vif; 100 ,

10 - 183, osc ms transaction ms req;

. 102

11 /1 perloq of the generated clock 103 “uvm component utils(osc ms driver

12 real period; 104 -

13 165  function new (string name, uvm component parent);
14 // component macro 106 super.new(name, parent);

15 “uvm component utils begin(osc driver) 167  endfunction : new

16 ‘uvm field real(period, UVM ALL ON) 168 : reg _
17 ‘uvm component utils end 189 _vistdal fupctlon void build phase(uvm phase phase);
18 116 super.build phase(phase);

' _ . ‘ 111 if(!'uvm config db#(osc bridge proxy)::get(this,"", "bridge proxy", bridge proxy))
19 functlon new 'Stl’lng name, Uvm_component parent'; 112 'uvm err0r|getmtypemname| _|,”'[|v'lrjge pr‘o;.;'}: not CO.”H;lng"E'Ifiul,'
20 super.newiname, parent); 113  enatTunatian
21 endfunction : new 114
22 115 task get and drive();
23 virtual function void build phase(uvm phase phase); 112 forever begin _ |
24 super.build phase(phase); 11 seq_ltem_port.getfnext_ltemrreql
25 endfunction s JUASE(WS_reg,1e0)
119 drive transaction(ms req);
26 . . 120 seq item port.item done();
27  function void connect phase(uvm phase phase); 121 fork
28 if ('uvm config db#(virtual osc if)::get(this,"", "vif", vif)) 122 #(20*1ns); //Time for transaction
29 ‘uvm_error("NOVIF",{"virtual interface must be set for: ",get ful23 begin : sample thread _
30 endfunction: connect phase 124 #(1ns) bridge proxy.sampling do = 1;
31 = 125 #(1ns) bridge proxy.sampling do = 0;
k h : h h g 126 end

32 task run p ase(uvm_phase phase); 127 join
33 get and drivel(); 128 end
34 endtask : run phase 129 endtask : get and drive

accellera) - | e

CONFERENCE AMND EXHIBITION




analog clk trans
UvM

7 class osc transaction extends uvm sequence item;

8

9
10
11
12
13
14
15
16
17
18
19

rand real freq; // frequency of input clock

‘uvm object utils begin(osc transaction)
‘uvm field real(freq, UVM ALL ON)
‘uvm object utils end

function new (string name = "osc transaction");

super.new(name) ;
endfunction : new

constraint freq ¢ { freq inside {625, 1250, 25

20 endclass : osc transaction

acceller?)

SYSTEMS INITIATIVE

'

38

Yl
2 -

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

UVM-AMS

class osc ms transaction extends osc transaction;

T Brloge FIUAY rrevas

rand real ampl;

//rand real freq; // already exists in base class
rand real bias;

rand real period;

rand bit enable;
rand real delay; //Delay in ns
rand int duration;

real measured ampl;
real measured bias;
real measured freq;
constraint default drive trans c {
freq > 5e8;
freq < 1e9;
ampl > 0;
ampl < 1.65;
bias inside {[-0.5:0.5

1¥;
enable dist { 1'b® := 1, 1'bl :=5 };

constraint default measurement trans c {
duration > 20;
duration < 32;
delay > 0.0;
delay < 1.0;

2023

DESIGN AND VERIFICATION™

DVLCI

CONFERENCE AMND EXHIBITION



3
4
5
6
7
8

9
10
i1
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

analog clk tb

UVM

ctass freq adpt tb “extends uvnm env;
‘uvm component utils(freq adpt tb)

registers env registers;

osc env freq generator;

osc_env freq detector;

freq adpt scoreboard freq adpt sb;

function new (string name,
super.new(name, parent);
endfunction : new

uvm_component parent=null);

function void build phase(uvm phase phase);

uvm _config db#(virtual osc if)::set(this," cq generator*",
uvm config db#(virtual osc “if)::set(this,"freq detector*",
uvm config “db#(virtual reglsters if): setfthis,”“egl5tef5.

uvm config db#(virtual registers if)::set(this,"freqg

super.build phase(phase);

freq generator = osc _env::type id::create("freq generator”,
freq_detector = osc_env::type id::create("freq detector",
registers = registers env::type id::create("registers",
freq adpt sb = freq adpt scoreboard::type id::create|

endfunction : build phase

function void connect phase(uvm phase phase);

adpt

38=uum_component utils(freq adpt ms_th)
39
40  function new (string name, uvm component parent=null);
41 super.new(name, parent);
42 endfunction : new
43
44  functismVoid build phase(uvm phase phase);
45 avm_config db anosc bridge proxy)::set(this,"freq gen.agent.*","proxy", top.gen_bridge.bridge prosy);
46 uvm_config ‘db #(osc _bridge proxy)::set(this,"freq det.agent.*","proxy", top.det bridge.bridge proxy/y
47 // override driver, monitor, and scoreboard with UVM-AMS versions
48 set type override by typelosc_transaction::get type(),osc_ms_transaction::get type());
49 set _type override _by typelosc driver::get type(), osc_ms_driver::get _type())
——— 50 ‘ﬂt_type_overr1de_by_typerosc_monltor :get_typel), osc_ms_monitor::get typel());
o B top.gts, supershuild phase(phase);
vif", top.dtsp  endfunction
reg_agent.*", 53
sb”, 54 endclass :

this) ;
this)
this);

freq adpt sb",

UVM-AMS

37 class freq adpt ms_tb extends freq adpt tb;

freq_adpt ms_tb

this);

registers.reg agent.monitor.item collected port.connect(freq adpt sb.sb registers in);
freq generator.agent.monitor. item collected _port.connect(freq adpt sb. sb _0sc_gen);
freq detector.agent.monitor.item collected port connect(freq_ adpt sb. sb osc det);

endfunction : connect phase

endclass : freq adpt tb

SYSTEMS INITIATIVE

2023

DESIGN AND VERIFICATION™

CONFERENCE AMND EXHIBITION



(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Demo

SYSTEMS INITIATIVE




(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

UVM Messaging

SYSTEMS INITIATIVE




Messages for Debug and Error Reporting

* Debugging activity inside a large environment with many UVCs is critical.

* Need to report:
* Errors
* Debug
* Progress

* Messages need to be categorized via severity:
* Fatal, Error, Warning, Info

Need to link actions with messages
* Stop simulation on fatal or after four errors
 Summarize number of messages reported

Need a different mechanism than simulator messages to avoid filtering
effects

()

SYSTEMS INITIATIVE



UVM Messaging System

UVM Message Types

‘uvm_info()

f ‘uvm_warning()

‘uvm_error()

‘uvm_fatal()

Message
Call-backs

()

SYSTEMS INITIATIVE

=
b
X
X
E

—
-
o
o
I

Verbosity Filter

B

-

-

-

Message Actions

UVM_DISPLAY > | P
| Log
UVM_LOG > File
UVM_COUNT  +—p COUNTER —
UVM_EXIT > Sfinish();
UVM_STOP > Sstop();

o

/

—

UVM_RM_RECORD |

uvm report server

UVM Messaging System Overview

e

UVM_TR_DATABASE

2023

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AMND EXHIBITION



UVM Messaging from Analog Resource

 UVM Reporting macros not supported in Verilog-AMS modules.
* Take advantage of up-scoping to provide solution. (1364-2001 LRM)

* ‘include "uvm_ams.vamsh® in Verilog-AMS file (analog resource)
* localparams to define UVM Verbosity levels as integers to match UVM enum

* ‘include "uvm_ams.svh” in SV fiIe (MS Bridge)
 Void functions that wrap ‘'uvm_*() reporting macros into functions of the same name

* Within a digital block of a Verilog-AMS file users call;
uvm [mfo|warn|ng|error|fatal]%
* Up scoping means it find the functlon in the MS Bridge file

e Within analog block, many solutions so here is one (calling of digital
functions not aIIowed)

* Set string value and toggle integer
* Use absdelta to trigger on toggle and read string to call up-scoping function

2023

() & DBVED N

SYSTEMS INITIATIVE



UVM Message — Analog block

VAMS

localparam string uvm path =

$sformat (uvm path, ”%m”) ;
localparam string message =

$sformat ("The Current is above the threshold @ %eA",I PLUS);
uvm info (P TYPE,message,UVM MEDIUM,uvm path);

SV Bridge

function void uvm info(string id, string message, 1int verbosity level, string uvm path);
‘uvm_info context (id,message,uvm verbosity' (verbosity level),uvm root::get () .find(uvm path))
endfunction: uvm info

* Hold UVM component hierarchy path string in proxy class via
get full_name()

* Use * context reporting macros to direct message to relevant component

UVM INFO ../../include/uvm ams.svh(26) @ 52001.098068ns:
The Current i1s above the threshold @ 1.178812e+00A

-~ e @ 2023
accellers) - __ _. e nots

uvm test top.env.v agent [i bridge]

CONFERENCE AMND EXHIBITION

e - DVCON
SYSTEMS INITIATIVE . . . - . . _



Conclusions

* There is a need for more advanced, standard methodologies for
scalable, reusable and metric-driven mixed-signal (AMS/DMS)
verification

* The UVM-AMS proposal addresses the gaps in current verification
methodology standards

* Extend UVM class-based approach to seamlessly support the module-
based approach (MS Bridge) needed for mixed-signal verification
* Targeting analog/mixed-signal contents (RNM, electrical/SPICE)
* Application and extension of existing UVM concepts and components
* Sequencer, Driver, Monitor

* MS Bridge / Analog resources
* UVM Messaging System

()

SYSTEMS INITIATIVE



(2023

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Questions?

SYSTEMS INITIATIVE



	Migrating from UVM to UVM-AMS
	UVM-AMS WG Member Companies
	What Are We Trying to Do?
	Classical UVM Example
	Terminology
	Requirements
	Now the Real Work Begins
	Generating/Driving Continuous Analog Signals
	Overall UVM-AMS Methodology
	UVM-AMS Analog Resource
	UVM-AMS Analog Resource
	Proxy “hook-up”
	Proxy  Analog Resource
	Frequency_Adapter DUT
	UVM TB – add analog capability 
	Freq_adapter Waveforms
	Model of Frequency Adapter Ports in SV
	Model of Frequency Adapter Ports in SV RNM
	Model of Frequency Adapter Ports in VAMS
	Analog Resource for SV-RNM/VAMS�Option 1
	Analog Resource for VAMS�Option 2
	Analog Resource for VAMS�Option 3
	Example Walk-through
	Steps
	analog_clk_bridge
	analog_clk_driver
	analog_clk_trans
	analog_clk_tb
	Demo
	UVM Messaging
	Messages for Debug and Error Reporting
	UVM Messaging System
	UVM Messaging from Analog Resource
	UVM Message – Analog block
	Conclusions
	Questions?

