
• Build time-travel debugging into regression flow

• Record the failing test, simply replay the recording

• Design for debug

• Identify failures in the executable to use last command

• Use assertions widely

• Add intermediate variables, for conditional breakpoints

• Thread Fuzzing

• Challenge mode to provoke concurrency issues (race
conditions, deadlocks)

• Extract waveforms from recording without re-running

• Click on transition to load same point in debugger

• Four times faster to find a bug

• Easy to follow data through complex designs

• Helps to understand large codebases

• Frees engineers’ time to shift left:

• Bring-up more application layers before tape-out

• Explore alternative PPA optimizations

• Improve coverage closure and stability

• Reduce time-to-market

info@undo.io

Greg Law

Undo

Jonathan Bonsor-Matthews

LightBlue Logic

Time-Travel Debugging
for High-Level Synthesis

Time-Travel Debugging Commands

Why Time-Travel Debugging

Best Practice

Waveforms -> Debugger Results

Command Forward Function Reverse Function

Step Step into next function Step into previous function

Next Execute next line Execute previous line

Finish Return from function Execute until just before
function called

Break
(condition)

Stop execution at location in
code (optional condition)

Same

Watch Stop execution when certain
variable/memory changes

Same

Continue Execute forwards Execute backwards

Last - Jump to last time data
changes

	Slide 1

