
Time-Travel Debugging
for High-Level Synthesis

Greg Law, Undo

Jonathan Bonsor-Matthews, LightBlue Logic
A white text on a green background

AI-generated content may be incorrect.

https://undo.io/
https://www.lightbluelogic.com/


Why Time-Travel Debugging?



Time-Travel Debugging Commands
Command Forward Function Reverse Function

Step Step into next function Step into previous function

Next Execute next line Execute previous line

Finish Return from function Execute until just before function called

Break 
(condition)

Stop execution at location in 
code (optional condition)

Same

Watch Stop execution when certain 
variable/memory changes

Same

Continue Execute forwards Execute backwards

Last - Jump to last time data changes



Best Practice

• Build time-travel debugging into regression flow

• Record the failing test, simply replay the recording

• Design for debug

• Identify failures in the executable to use last command

• Use assertions widely

• Add intermediate variables, for conditional breakpoints

• Thread Fuzzing
• Challenge mode to provoke concurrency issues (race conditions, deadlocks)



Waveforms -> Debugger

• Extract waveforms from recording without re-running

• Click on transition to load same point in debugger



Results

• Four times faster to find a bug

• Easy to follow data through complex designs

• Helps to understand large codebases

• Frees engineers’ time to shift left:
• Bring-up more application layers before tape-out

• Explore alternative PPA optimizations

• Improve coverage closure

• Improve stability (by not ignoring the challenging bugs)

• Reduce time-to-market



Questions?

info@undo.io


	Slide 1: Time-Travel Debugging for High-Level Synthesis
	Slide 2: Why Time-Travel Debugging?
	Slide 3: Time-Travel Debugging Commands
	Slide 4: Best Practice
	Slide 5: Waveforms -> Debugger
	Slide 6: Results
	Slide 7: Questions?

