
Deadlock Free Design Assurance Using Architectural
Formal Verification
Bhushan Parikh, Shaman Narayana

Intel Corporation

Agenda

• Problem statement
• Prove no deadlock in the system

• Example of a complex system
• Lossless HW Compression IP

• Challenges in verifying no deadlock requirement

• Architectural Formal Verification overview

• Results and case studies

• Summary

Acronyms

• Si => Silicon

• FV => Formal Verification

• PSV => Pre-Si Verification

• AM => Architectural Model

• SV => System Verilog

• FIFO => First In First Out

• AFV => Architectural Formal Verification

Problem Statement
• Prove no deadlock in the design

• A deadlock in the system can lead to a Denial of Service (DoS) attack

• PSV requires running many test cases targeting very specific conditions

• Standard(/Traditional) FV methods are not effective at system level due to
exponential complexity

User

Attacker

Server
(/System)

Lossless HW Compression IP: An Example
Ingress FIFO Match Logic

Entropy
Generator

Symbol Buffer

Symbol
Encoder

Bits to Byte
Packer

Egress FIFO

Error Handling
and Control Logic

Configuration

Complete

Uncompressed
data stream

Compressed data
stream

Indicates packet valid

Indicates packet

Indicates stall signal

Indicates control signal

Indicates error signal

No deadlock in the design == Lossless HW Compression IP must assert completion signal for every

end of the request packet irrespective of any error

Challenges Associated with PSV

• Full sign-off is not feasible
• Exponentially large number of input combinations

• Verification of all input combinations are required

• Error scenarios further increases the test cases

Challenges Associated with Traditional FV

SVA
Property

#
SVA Property Status Bound # Time

Assert 1
A completion signal is asserted for every end
of the request packet

Undetermined 15 ~ 24 hours

Cover 1
A completion signal is asserted for end of the
request packet

Covered 25 < 5 minutes

Cover 2
Input packet is sent from Ingress FIFO to Match
Logic

Covered 6 < 1 minute

Cover 3
Match Logic processed input and sent output
to Entropy Generator

Undetermined 50 ~ 24 hours

Cover 4 Entropy generation is complete Undetermined 38 ~ 24 hours

Proposed Methodology: Architectural FV

STEP #1
Develop AMs for

design blocks

STEP #2
Replace design blocks
with their respective

AMs and prove no
system-level deadlock

property

STEP #3
Verify that

Architecture
Modeling of design
block is matching to

the RTL behavior

Update RTL and/or
AMs to address the

mismatch

Sign-Off

NO

Mismatch found? YES

Step1: Develop AMs

• Model the system-level requirements using the SV ASSUME properties

• Abstract requirements not applicable to the system-level requirement

Ingress FIFO AM Example: Requirements
1. In the absence of an error, the FIFO must forward packets to

the Match Logic

2. The FIFO must drop all incoming packets except the end of
the request packet in case of an error

3. The FIFO must drop all subsequent packets after the
completion signal is asserted

4. FIFO must not overrun or underrun

5. Value of the data length must match with valid data bytes in
the packet

6. The FIFO must not corrupt the data

Control
specific

Data
specific

Ingress FIFO AM Example: SV Properties
module Ingress_FIFO (

//input
input [000:000] packet_in_valid,
input [128:000] packet_in_payload,
input [003:000] packet_in_len_bytes,
input [000:000] error,
input [000:000] completion,
input [000:000] output_bigger_than_expected,

//output
output [000:000] packet_out_valid,
output [063:000] packet_out_payload,
output [003:000] packet_out_len_bytes,
output [000:000] get_next_packet,
output [000:000] full

);

localparam END_OF_REQUEST_PACKET = 15;

assume –name forward_packets_if_no_error
{in_fifo_vld_pkt_in & ~error |=> ##[0:5] in_fifo_vld_pkt_out}​

assume –name drop_packets_if_errors_or_completion_or_biger_output
{$rose(error | completion | output_bigger_than_expected) |->

 (~packet_out_valid & get_next_packet) s_until (packet_payload[3:0] == END_OF_REQUEST_PACKET)} ​

assume –name no_input_packets_if_ingress_fifo_is_full
{full |-> ~get_next_packet} ​

assume –name send_end_of_request_packet_if_error_or_bigger_output
{$rose(error | output_bigger_than_expected) |=> (packet_out_payload[3:0] == END_OF_REQUEST_PACKET)}​

endmodule

• Modeling of the data is
not required

• Modeling of the data
length is not required

Step2: Replace RTL Blocks with AMs

• Leave the RTL block(/s) with simple
functionality as it is
• Symbol Encoder

• Bit to Byte Packer

• Egress FIFO

• No modeling for key control RTL
block(/s)
• Error Handling and Control Logic

• Prove the system-level requirement
of no deadlock

Indicates AM Indicates RTL Block

Ingress FIFO Match Logic
Entropy

Generator

Symbol Buffer

Symbol
Encoder

Bits to Byte
Packer

Egress FIFO

Error Handling
and Control Logic

Configuration

Complete

Indicates packet valid

Indicates packet

Indicates stall signal

Indicates control signal

Indicates error signal

Step3: Verify AMs and RTL Blocks

• Verify that the SV properties used for
modeling the AMs are matching the RTL
behavior
• The ASSUME properties of the AMs become

ASSERT properties for each block

• Leverage traditional FV methodology

• Less complexity due to block-level FV

• Utilize design reduction techniques if required

Architectural Model RTL Block

Results

• Identified multiple logic defects in the PSV signed-off design
• Required complex stimulus and alignment of multiple events in the PSV environment

• Identified improvements in the design for error-related cases

SVA
Property

#
SVA Property Status Bound # Time

Assert 1
A completion signal is asserted for every end of the
request packet

Converged 52 < 30 minutes

Cover 3
Match Logic processed input and sent output to Entropy
Generator

Covered 75 < 5 minutes

Cover 4 Entropy generation is complete Covered 84 < 10 minutes

Logic Defects: Case Study 1

• Expected behavior
• Observed in all

PSV test cases

• Failing Scenario
• Required specific

combination of
the input
starvation and
output back-
pressure

Logic Defects: Case Study 2

• Error and Control FSM did not comprehend the handling of all errors

• Missing error scenario required a specific combination of input pattern and
delay

Case Study 2: Behavior Observed in PSV Runs

Case Studies: Further Analysis
• Case study 1:

• Updated PSV test-bench

• Reliably reproduced the logic defect in PSV within 1 month of execution

• Case study 2:
• Why missed in the PSV coverage review?

• Error injection was used in PSV

• Injection led to multiple error assertions

• Updated PSV test-bench

• Reliably reproduced the logic defect in PSV after 4 months of execution

Learnings

• Advance planning is required for AFV

• Proving the system-level requirement is not enough

• May help identify gaps in the architecture

Summary

• Proving No deadlock at the system-level is practical using AFV

• Deployed the AFV methodology for a complex system and discovered all
the logic defects

• AFV is a highly scalable methodology

Thank You ☺

Questions?

