
Next-Generation Formal Property Verification:
Lightweight Theorem Proving Integrated into

Model Checking
Erik Seligman, Cadence Design Systems, seligman@cadence.com

Karthik Baddam, Qualcomm, kbaddam@qti.qualcomm.com
Barbara Leite Almeida, Thamara Andrade, Poliana Bueno, Carla Ferreira, Matheus Fonesca,

Lars Lundgren, Raquel Lara dos Santos Pereira, Fabiano Peixoto, Vincent Reynolds, Cadence
Design Systems

mailto:seligman@cadence.com
mailto:kbaddam@qti.qualcomm.com

Motivation & background

Key Proof Structure Concepts

Success At Qualcomm

Summary

Agenda

Motivation & background

Key Proof Structure Concepts

Success At Qualcomm

Summary

Agenda

• FV experts decompose problem with advanced flows
• Multi-step, variety of operations

• Sub-step results together make overall proof

• Use large tcl script running many tasks

• Examples of common techniques
• Partitioning (different proof options for subgroups of asserts)
• Case splitting
• Stopats

• Assume-Guarantee (Helper Assertions)

• As tool capacity grows, so do user ambitions
➔ Engine improvements will never replace these methods!

Background – Proof Convergence Using Decomposition

Complex Requirement
on Big Design

Partial Check 1
on Big Design

Partial Check 2
on Big Design

Partial Check 2
on Minimal

Design

• Traditionally done with user-developed TCL
• Large, complex, linear scripts

• Multiple “tasks” (subprocesses) for decomposed problem
• Each contains many individual assertion proofs

• Users need to manage tasks and configurations

• Does the combination of tasks compose a valid overall proof?

• Is this decomposition correct?
• … now?

• … after future design changes?

• … when inherited by next project?

• Have I proven the right set of properties?

Decomposition in Jasper: The Problem

• Ignored Properties
• Tasks divide properties into groups, miss new ones in RTL

• Assume Guarantee Without Guarantee
• Naïve user completes “full proof” on task that assumes a helper…
• Without checking that the helper was proven in another task

• Incomplete Case Split
• Tasks created for each possible opcode, but one is overlooked

• Wrong Composition of Bounds
• Main task in Assume Guarantee gets “full proof” of key targets…
• But key helper only had bounded proof, so should consider all AG proofs bounded

Proof Decomposition By Hand: Some Common Mistakes

Usage Element Traditional Model Checking Model Checking with Proof Structure

What to prove Individual Properties Properties + Composition Rules

Multiple proof tasks
User controlled “bag of tasks”
No defined relations between tasks

“Nodes” (Proof Structure tasks) with
provable logical relationships

Documentation of
decomposition rules

Completely implicit in user scripts
Defined when nodes created
Correct By Construction

Detecting logical gaps
in decomposition

Need thorough manual review
Tool enforces overall correctness
“Proven” report checks valid
decomposition

Proof Structure Vision

• Full pipeline too complex for proof

Top Level
Assert: Design

Correct

Example: Proving A Pipeline

• Old method required multiple tasks:

1. Prove Stages 1-3, 4-6 (Guarantee)

2. Prove Top Level Assert, assuming above proofs passed (Assume)

• Lots of risks if users manually track (especially on less trivial cases!)

• Were all helpers proven in some task?

• Does sum total of tasks == fully sound proof?

• Were any top level properties lost during task setup?

Assert:
stages 1-3

correct

Top Level
Assert: Design

Correct

Assert:
stages 4-6

correct

Assume-Guarantee: Proving Pipeline with “Helper” Assertions

Assert:
stages 1-3

correct

Assert:
stages 4-6

correct
stopat

(ignore)
stages 1-3

Top Level Assert:
Design Correct
stopat (ignore)

pipe details

Partition: 2 Tasks

• Old method required multiple tasks:

1. Prove Stages 1-3 (Guarantee)

2. Prove Stages 4-6 (Guarantee) + simplify with stopat

3. Prove Top Level Assert, assuming above proofs passed (Assume) + simplify with stopat

• Lots of risks if you manually track (especially on less trivial cases!)

Assume-Guarantee: Proving Pipeline with “Helper” Assertions

Assume-Guarantee: Subproofs

Assume-Guarantee: Prove Top

Assert:
stages 1-3

correct

Assert:
stages 4-6

correct

Top Level
Assert: Design

Correct

Solution: Proof Structure

Assume-Guarantee: Subproofs

Assume-Guarantee: Prove Top

Partition: 2 Tasks for Helper Proofs

Assert:
stages 1-
3 correct

Assert:
stages 4-6

correct

Top Level Assert:
Design Correct

Partition: 2 Tasks

Solution: Proof Structure

Assume-Guarantee: Subproofs

Assume-Guarantee: Prove Top

Partition: 2 Tasks for Helper Proofs

Stopat: Ignore 1st half-pipeline

Stopat: Ignore pipeline logic

Assert:
stages 1-
3 correct

Assert: stages
4-6 correct

stopat (ignore)
stages 1-3

Top Level Assert:
Design Correct

stopat (ignore) pipe details

Partition: 2 Tasks

Tool/GUI
manages tasks
hierarchically,
ensuring proof

soundness

Solution: Proof Structure

Benefit Details

Well-Defined Environments New node env == derived from decomposition rule used

Correct By Construction Proofs propagate up tree based on sound rules

Correct Bounded Propagation Bounds for proofs include all dependent proofs

Visible Proof Strategy Proof Structure tree fully defines the decomposition

Enable Parallelism Nodes can execute independently- results merged later

Enable Complex Strategies Some strategies hard to script but easier in Proof Structure

Key Benefits of Using Proof Structure

Motivation & background

Key Proof Structure Concepts

Success At Qualcomm

Summary

Agenda

Traditional use model:
Flat task-based solution

Ad hoc script judges soundness

Custom scripts to manage tasks

Proof Structure:
Tool understands decomposition

Tool knows how nodes relate

Old Methods vs Proof Structure

• Proof Structure node like traditional task…
• BUT with limitations to enforce soundness

• No manual cut points, abstractions, etc

• Any environment change is well-defined
• Inherited from source task when node created

• Proof Structure modifies based on node type

➔Proof Structure understands parent-child relationship
➔& can enforce correct propagation

Core Proof Structure Backbone: Well-Controlled Nodes

• Proof flows are implemented using ‘operations’
• Operation == pre-defined decomposition step

• Each operation has one or more ‘implementation nodes’

• Examples: Assume Guarantee, Case Split, Partition

• Multiple operations iteratively refine a proof
• Cascaded operations form a hierarchy

• Results propagate from lower levels to higher levels
• Propagate == decide how subtree proofs travel up tree

• Propagation based on soundness rules

• Propagate full proofs, bounded proofs, and counterexamples (cex)

What is Proof Structure?

• A specific step in the proof flow
• Cascading operations == successive refinement

• Results propagate up the chain

• Operation nodes handle proof propagation
• Operation type defines propagation rules

• Implementation nodes provide proof targets
➔One or more implementation nodes per operation

➔Self-documenting, no hidden steps

➔Assertion proofs run on implementation nodes

helper
set 1

Assume Guarantee

assume
helper
set 3

helper
set 2

case 1

Case Split

case 2
always

(case1 | case2)

ROOT

What is an operation?

• Assume Guarantee helper chain
• P1 -> P2 -> P3 -> P4

• Each node to help proofs to right
• P2 proof assumes P1

• P3 proof assumes P1, P2

• P4 proof assumes P1, P2, P3

• Case Split to solve challenging assertion P2
• Separate proof for cases C1 and C2

P1

Assume Guarantee
p1 p2 p3 p4

P4P3P2

C1->P2

Case Split P2 (c1 c2)

C2->P2
always
(C1|C2)

ROOT: Assertions p1, p2,
p3, p4

Proof With Propagation Example
Step 1: Setup

• All these proofs can run in parallel

• P1, P4 fully proven

• P3 proves to bound 75

• Case C1, Completeness proven

• Case C2 proves to bound 50

P1

Assume Guarantee
p1 p2 p3 p4

P4
P3

b 75
P2

C1->P2

Case Split P2 (c1 c2)

C2->P2
b 50

always
(C1|C2)

ROOT: Assertions p1, p2,
p3, p4

Proof With Propagation Example
Step 2: Leaf Level Proofs

• Overall Case Split proof of P2 is bounded at 50
• Due to worst case C2

• Thus Bound 50 proof propagated up for P2

P1

Assume Guarantee
p1 p2 p3 p4

P4
P3

b 75
P2

b50

C1->P2

Case Split P2 (c1 c2)

C2->P2
b 50

always
(C1|C2)

ROOT: Assertions p1, p2,
p3, p4

Proof With Propagation Example
Step 3: Layer 1 propagation

• Assume Guarantee propagation
• P1 first in chain: added no assumes or helpers

• So proof fully propagates

• P2 inherits propagated bound 50
• With fully proven P1 as helper

• P3, P4 only propagate bound 50
• Since P2 is helper for both, with bound only 50

• Local proofs of P3, P4 only valid to that bound

P1

Assume Guarantee
p1 p2 p3 p4

P4
P3

b 75
P2

b50

C1->P2

Case Split P2 (c1 c2)

C2->P2
b 50

always
(C1|C2)

ROOT: P1 proven
P2, P3, P4: bound 50

Proof With Propagation Example
Step 4: Complete Propagation

• Underconstrain (Stopat)

• Overconstrain

• Partition

• Case Split (Soft and Hard)

• Assume Guarantee

• Compositional Assume Guarantee

Major Operations In Current Implementation

Operation Propagation Automatic
Supplemental Proofs

Underconstrain (Stopat) Proofs, but not cex -

Overconstrain Cex, but not proofs -

Partition Both proofs and cex No property missed

Case Split Cex, and proofs if all cases + auto checks pass Completeness, Validity

Assume Guarantee Cex, and proofs if relevant helpers pass -

Compositional Assume
Guarantee

Cex, and proofs if all mutual helpers pass -

Main Propagation Rules & Hazard Prevention

Motivation & background

Key Proof Structure Concepts

Success At Qualcomm

Summary

Agenda

Qualcomm Table Walk Design
Natural Fit for Assume Guarantee

• Before: Traditional FPV
• 50+ tasks, very complex to manage

• User afraid of proof gaps, so
serialized dependent proofs

• Multiple days for each proof run

• Hard to experiment with alternate
strategies for subproofs

Qualcomm Table Walk
Before and After Proof Structure

• Before: Traditional FPV
• 50+ tasks, very complex to manage

• User afraid of proof gaps, so
serialized dependent proofs

• Multiple days for each proof run

• Hard to experiment with alternate
strategies for subproofs

Qualcomm Table Walk
Before and After Proof Structure

• After Proof Structure: Success!
• Organized tracking of Assume

Guarantee chains

• Leveraged Compositional Assume
Guarantee in some areas

• Full proof run completes in less than
a day

• Found 7 high-quality logic bugs
• Including one missed for 2 years by all

validation flows

Many cases where helper
proof needed further Assume

Guarantee breakdown

Qualcomm Table Walk
Proof Structure Snapshot

• Qualcomm: Nitish Sharma presenting at this conference
• Just before this talk!
• Significantly improved productivity for complex decomposition

• Marvell: DAC 2023 presentation on Proof Structure Case Split
• Complex environment with 10,000+ assertions
• Estimate: saved several weeks of proof setup / scripting effort
• + Caught proof setup scripting bugs – likely escapes otherwise

• HPE: Jasper User Group 2022 presentation
• Multi-layered example with Assume Guarantee, Partitions, & Underconstraints
• Logistics enabled much more easily with Proof Structure
• Found 15 design bugs, including 2 missed by simulation/emulation for long time

Other Proof Structure Customer Success

Motivation & background

Key Proof Structure Concepts

Success At Qualcomm

Summary

Agenda

• Organization
• Decomposition tree is clear, not implied by 1000 line script
• Correct by construction

• Sound Proof Reasoning
• Environments are consistent
• Automatic correctness proofs
• Bounds correctly integrated

• Maintainability
• New owner can easily understand strategy
• Propagation automatically blocks no-longer-valid proofs

• Parallelism
• All leaf nodes have sufficient context to run independently

• Enable Complex Strategies
• Complex multi-layer strategies now more feasible to implement efficiently

Summary: Why use Proof Structure?

• Decomposition is here to stay
• Tools get more powerful…
• … but users throw bigger problems at them!

• Huge opportunity: support safe decomposition
• Historical view: domain of user-level scripting

• Many chances for errors in custom scripts
• Very dangerous for long-term maintainability

• Proof Structure has shown that we can do better
• Leverage ideas from Theorem Proving
• Tool reduces burden/risk of user scripts

Don’t Just Verify Properties, Verify the Methodology!

Key Lessons of Proof Structure

• “Rapid Adoption Kit” class/lab available at https://support.cadence.com
• Search for “Proof Structure” in search box

• Take the exam & earn a badge!

Try Proof Structure Yourself in Cadence JasperTM Tools

https://support.cadence.com/

Questions

Backup Slides

• Underconstrain = ignore some aspect of the logic
• Cut Point / Stopat: Treat specific signal(s) as free input
• Assumption Removal: Ignore some constraints
• Abstraction: Substitute simpler logic

• Ignore reset value / Counter can skip forward / etc.

• Very common technique- Proofs are fully valid
• But counterexamples can’t be trusted

• Propagation rules
• Counterexamples are untrustworthy– don’t propagate
• Any proof is valid, can propagate

• Including bounded proofs: propagate with same bound

Underconstrain Operation

Underconstrain
IMP

Underconstrain_OP

• Overconstrain = disallow some real behaviours
• Add assumptions, or tie signal to constant

• Great for bug hunting- counterexamples are valid
• But proofs can’t be trusted

• Propagation rules

• Counterexamples are valid, always propagate

• Proofs are not valid, never propagate
• Same is true of bounded proofs

Overconstrain Operation

Overconstrain
IMP

Overconstrain_OP

• Simple operation, but important benefits
• Built-in checks: duplication, missing properties

• Option to auto-group missing properties in default node

• Enable using different strategies in later subtrees

• Propagation is easy: environment is unchanged from parent
• ➔ proofs, counterexamples, and bounds always valid in any node

Partition: Divide Properties Into Groups

Group1 . . . GroupN
Remaining
(optional)

Partition_Op

• Soft (Precondition) Case Split

Soft and Hard Case Split (I)

Case Split Op

assert (case1 |->
target)

assert (
case1 ||
case2 ||

…)

assert (case2 |->
target)

Soft Case Split: No
assumptions added, so proofs

fully sound

Hard Case Split: better for
complexity… but possibly

overconstraining

• Soft (Precondition) Case Split

• Hard (Assume)Case Split

Soft and Hard Case Split (II)

Case Split Op

assert (case1 |->
target)

assert (
case1 ||
case2 ||

…)

assert (case2 |->
target)

Hard Case Split Op

assume (case1)
assert (target)

assert (
case1 ||
case2 ||

…)

Prove Validityassume (case2)
assert (target)

Soft Case Split: No
assumptions added, so proofs

fully sound

• Since assumptions are added, proof may not be sound
• ➔ Proof Structure adds a node to prove validity
• Counterexamples are fully valid- great for bug hunting

• Validity types (selected when node created)
• Combinational: Prove model contains no state elements
• Invariant: Prove case is constant in model

• Example: constant assumptions from FPV register setup
• Exhaustive: Node assumes (case1|case2|…), proves target

• Logically redundant with individual case nodes
• Case nodes == faster bug hunting, get to good depths much more easily
• Validity node == signoff-quality propagatable proof later in project

Hard Case Split Validity

Prove Validity

• Counterexamples always propagate from case nodes
• If assertion is false for one case, it’s false
• From completeness/validity nodes, no propagation

• Proof does not exist at parent

• Proofs need to integrate results from subnodes
• Need all cases + completeness + (if hard case split) validity proofs to pass
• Bounded proofs: min bound of {min case, completeness, validity} propagates

Case Split Propagation Rules
Hard Case Split Op

assume (case1)
assert (target)

assert (
case1 ||
case2 ||

…)

Prove Validityassume (case2)
assert (target)

• Prove assertions earlier in fanin to aid target proofs
• Simplify problem by pre-proving some logic ➔ faster convergence on target

• Depends on helpers being valid- need to prove them

• Can use cascading series of helper sets, or just one

Assume Guarantee (“Helper Assertions”)

➔
target

H1

H2

H3

H1

H2

H3

+
Assuming helper properties
pre-analyses yellow areas for
proof engines

Helper properties
are verified
in original
environment

Assume
Guarantee

➔ +

• Declare set(s) of targets & order on node creation

• Properties in node <N> assume those in nodes <N-1:0>
• Only leftmost group verified without additional assumptions

Assume Guarantee Operation in Proof Structure

guarantee1 guarantee2 assume. . .
Assume Guarantee Operation

• Counterexamples from any node are always valid & propagated

• Proof in an imp node is propagated only if all nodes to left are proven
• Except in leftmost node, where proofs always valid since no additional assumes

• Bounded proof = minimum bound of current node & all proofs to the left

Assume Guarantee Propagation Rules

guarantee1 guarantee2 assume. . .
Assume Guarantee Operation

• Use all assertions as helpers for each other
• Inductive method – not circular reasoning!

1. Prove all assertions true on cycle 1

2. Prove: (all assertions true on cycle N) ➔ (each assertion true on cycle N+1)

Compositional Assume Guarantee (CAG): The Concept

Cycle N

Cycle N + 1

Assertion1
Proven

(bound N)

Assertion2
Proven

(bound N)

Assertion3
Proven

(bound N)

Prove
Assertion1

Prove
Assertion2

Prove
Assertion3

• Only one implementation node, with all chosen properties
• Proof Structure adds (in same node) “CAG Assumption Bundle”
• This Bundle represents the set of mutual inductive assumes

• Propagation rules
• Any counterexample can safely propagate
• Proofs only propagate if all assertions pass

• Otherwise inductive assumptions are overconstraining
• For bounded proofs, minimum bound of any property == bound for all

Compositional Assume Guarantee in Proof Structure

CAG IMP

CAG_OP

	Slide 1: Next-Generation Formal Property Verification: Lightweight Theorem Proving Integrated into Model Checking
	Slide 2: Agenda
	Slide 3: Agenda
	Slide 4: Background – Proof Convergence Using Decomposition
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Agenda
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Main Propagation Rules & Hazard Prevention
	Slide 26: Agenda
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Agenda
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Questions
	Slide 37: Backup Slides
	Slide 38: Underconstrain Operation
	Slide 39: Overconstrain Operation
	Slide 40: Partition: Divide Properties Into Groups
	Slide 41: Soft and Hard Case Split (I)
	Slide 42: Soft and Hard Case Split (II)
	Slide 43: Hard Case Split Validity
	Slide 44: Case Split Propagation Rules
	Slide 45: Assume Guarantee (“Helper Assertions”)
	Slide 46: Assume Guarantee Operation in Proof Structure
	Slide 47: Assume Guarantee Propagation Rules
	Slide 48: Compositional Assume Guarantee (CAG): The Concept
	Slide 49: Compositional Assume Guarantee in Proof Structure

