
Practical Asynchronous SystemVerilog Assertions
Doug Smith

Asynchronous Assertions

module Counter (input Clock, Reset, Enable,

Load, UpDn, input [7:0] Data, output [7:0] Q);

always @(posedge Reset or posedge Clock)

 if (Reset)

 Q <= 0;

 else

 if (Enable)

 if (Load)

 Q <= Data;

 else

 if (UpDn)

 Q <= Q + 1;

 else

 Q <= Q – 1;

endmodule

initial begin

 ... Reset = 1;

initial forever

 Clock = #5 ~Clock;

Reset

6 07 2Q

?

assert property (@(posedge Reset) Q == 0);

Will this work?

SystemVerilog Scheduler

3

Inactive

NBA

Active

Postponed

Preponed

Observed

Re-inactive

Reactive PROGRAM code

schedules events here

MODULE and

INTERFACE code

schedules events here

=

#0
<=

$strobe,

$monitor

<= #N

#N ...

=

#0
#N ...

<=

From previous time slot

To next time slot

Assertion sample values

Assertions evaluated

Reset Q

0 Qprev

1 Qprev

1 0

1 0

Difficulty with Async Checking

4

Inactive

NBA

Active

Postponed

Preponed

Observed

Re-inactive

Reactive

=

#0
<=

$strobe,

$monitor

<= #N

#N ...

=

#0#N ...

<=

Previous

time slot

Next time slot

initial begin

 ... Reset = 1;
initial forever

 Clock = #5 ~Clock;

always @(posedge Reset ...)

 if (Reset) Q <= 0; ...

assert property (@(posedge Reset) Q == 0);

RTL not updated yet!

always @(posedge Reset)

 assert (Q == 0);

Reset Q

0 Qprev

1 Qprev

1 0

1 0

Difficulty with Async Checking

5

Inactive

NBA

Active

Postponed

Preponed

Observed

Re-inactive

Reactive

=

#0
<=

$strobe,

$monitor

<= #N

#N ...

=

#0#N ...

<=

Previous

time slot

Next time slot

initial begin

 ... Reset = 1;

always @(posedge Reset ...)

 if (Reset) Q <= 0; ...

RTL not updated yet!

Reset Q

0 Qprev

1 Qprev

1 0

1 0

Difficulty with Async Checking

6

Inactive

NBA

Active

Postponed

Preponed

Observed

Re-inactive

Reactive

=

#0
<=

$strobe,

$monitor

<= #N

#N ...

=

#0#N ...

<=

Previous

time slot

Next time slot

initial begin

 ... Reset = 1;

always @(posedge Reset ...)

 if (Reset) Q <= 0; ...

Checking needs delayed

Requirements for Async Assertions

Portable across simulators

Deterministic

Thorough – checks in both directions

In other words, practical asynchronous assertions
See DVCon 2010 paper, “Asynchronous Behaviors Meet Their Match with
SystemVerilog Assertions,” for other solutions and handling async protocols
https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/

https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/
https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/

Common Methods for
Async Checking

default clocking cb @(posedge FAST_CLK); endclocking

Synchronous, oversampling, or fast clock

assert property ($rose(POR) |-> ##[0:$] SYS_READY);

default clocking cb @(posedge CLOCK); endclocking

What about glitches?

OR

Event based methods

bit cover_por = 0;

cover property (@(posedge POR) 1) cover_por = 1;

assert property (@(posedge SYS_READY) cover_por);

Then …

What if SYS_READY never occurs?

Pros and Cons

Oversampling
Pro – works with any verification flow (sim, emulation, formal, prototyping)

Con – glitchy RTL behavior may go undetected

Coverage
Pro – easy to write sophisticated scenarios

Con – overlapping events undetected or event never occurs

Solution? Delay assertion checking …

Cause and Effect

Async signal causes another async event

• This is a weak property

• Make it strong

assert property (@(posedge POR) 1 |-> @(posedge SYS_READY) 1);

assert property (@(posedge POR) 1 |-> @(posedge SYS_READY) s_eventually(1));

Coverage Alternative

bit coverage[string];

cover property (@(posedge POR) 1) coverage["POR"]++;

cover property (@(posedge SYS_READY) 1) coverage["SYS_READY"]++;

final begin

 if (coverage["POR"]) begin

 assert (coverage["SYS_READY"] == coverage["POR"]) else

 $error(...);

 end

end Expect a cause for

each effect

POR SYS_READY

1 1

coverage[*]

Scenario 1 – Async signal causes another async event

Async signal causes RTL updates

assert property (@(posedge reset) q == 0);

Inactive

NBA

Active

Preponed

Observed

Reactive

reset == 0

q == 2

q <= 0

reset = 1

RTL

q == 0

Need to sample here!

q == 2

Inputs from Preponed

Program blocks

program async_asserts;

initial

forever

@(posedge reset)

assert (q == 0);

endprogram

NBA

Active

Preponed

Observed

Reactive

reset == 0

q == 2

q <= 0

q == 0

reset = 1

Scheduled in Reactive

Inputs from Observed

Scenario 2 – Async signal causes an RTL update

Sequence event

sequence seq_reset_event;

@(posedge reset) 1;

endsequence

always

@(seq_reset_event) assert (q == 0);

NBA

Active

Preponed

Observed

Reactive

reset == 0

q == 2

q <= 0

q == 0

reset = 1

Sequence end point in Observed

Scenario 2 – Async signal causes an RTL update

Procedural concurrent assertions

always @(posedge reset)

assert property (1)

assert (q == 0);

NBA

Active

Preponed

Observed

Reactive

reset == 0

q == 2

q <= 0

q == 0

reset = 1

Procedural concurrent assertions mature in Observed

always_comb

 assert property (@(posedge reset) 1)

 assert (q == 0);

assert() executes in Observed

OR

Scenario 2 – Async signal causes an RTL update

NBA

Active

Preponed

Observed

Reactive

reset == 0

q == 2

q <= 0

q == 0

reset = 1

Postponed q == 0

#t

A timing delay

assign #1 delayed_reset = reset;

assert property (@(posedge delayed_reset) q == 0);

NBA

Active

Preponed
reset == 0

q == 2

q <= 0

reset = 1

#t

NBA

Active

Preponed q == 0

#t+1

assign #1step delayed_reset = reset;

 assert property (@(posedge delayed_reset) q == 0);

Scenario 2 – Async signal causes an RTL update or overlaps

Async event causes async event with updates

assert property (@(posedge POR) 1 |-> @(posedge SYS_READY) s_eventually(1)

 |-> @(posedge SYS_GOOD) s_eventually(1));

NBA

Active

Preponed

POR = 1

#t

NBA

Active

Preponed

SYS_READY = 1

#t+N1

NBA

Active

Preponed

SYS_GOOD = …

#t+N2

Multiclocked property

Overlapping behavior

always_comb

 assert property (@(posedge POR) 1 |-> @(posedge SYS_READY) s_eventually(1))

 assert(SYS_GOOD == ...);

assert() executes in Observed

NBA

Active

Preponed

POR = 1

#t

NBA

Active

Preponed

SYS_READY = 1

SYS_GOOD = …

#t+N

Observed SYS_GOOD == ...

Scenario 3 – Async event causes async event with updates

Async timing window

property prop_check_timing;

 realtime start;

 realtime finish;

 @(posedge POR) (1, start = $realtime) |->

 @(posedge SYS_READY) (1, finish = $realtime) ##0

 (finish - start) == timing_window;

endproperty

assert property (prop_check_timing);

The Effect and its Cause

Async event caused by another event

bit cov_por;

cover property (@(posedge POR) 1) cov_por = 1;

assert property (@(posedge SYS_READY) cov_por);

sequence seq_past_por;

 @(posedge POR) 1 ##1 @(posedge SYS_READY) 1;

endsequence

assert property (@(posedge SYS_READY) seq_past_por.triggered);

OR

Not as portable

Overlapping effect-cause

sequence seq_past_por;
 @(posedge POR) 1 ##0 @(posedge SYS_READY) 1;
endsequence

assert property (@(posedge SYS_READY) seq_past_por.triggered);

Avoid - inconsistent support across tools

Scenario 5 – Async event causes by another event

RTL updated by async event

bit cov_reset;

always @(posedge reset) cov_reset = 1;

always_comb

assert property (@(q) 1)

assert (cov_reset)

cov_reset = 0;

else $error (…);

Multiple causes for a sequence of events

bit cov_por, cov_mem_ready, cov_sys_ready;

cover property (@(posedge POR) 1) cov_por = 1;

cover property (@(posedge MEM_READY) 1) cov_mem_ready = 1;

cover property (@(posedge SYS_READY) 1) cov_sys_ready = 1;

assert property (@(posedge SYS_GOOD) cov_por &&

 cov_mem_ready &&

 cov_sys_ready);

Async timing window effect-and-cause

bit cov_por;

realtime start;

cover property (@(posedge POR) 1) begin

 cov_por = 1;

 start = $realtime;

end

assert property (@(posedge SYS_READY) cov_por &&

 (($realtime - start) <= timing_window));

Summary

Recommendations

Asynchronous bus protocols
Use multi-clocked properties (usually straightforward)

Asynchronous controls
Oversampling generally good enough

Coverage approach works in most cases (plus bonus of functional coverage)

Other scenarios, find a way to delay the checker’s sampling

Questions?

Examples available at: https://edaplayground.com/x/qB72

	Slide 1: Practical Asynchronous SystemVerilog Assertions
	Slide 2: Asynchronous Assertions
	Slide 3: SystemVerilog Scheduler
	Slide 4: Difficulty with Async Checking
	Slide 5: Difficulty with Async Checking
	Slide 6: Difficulty with Async Checking
	Slide 7: Requirements for Async Assertions
	Slide 8: Common Methods for Async Checking
	Slide 9: Synchronous, oversampling, or fast clock
	Slide 10: Event based methods
	Slide 11: Pros and Cons
	Slide 12: Cause and Effect
	Slide 13: Async signal causes another async event
	Slide 14: Coverage Alternative
	Slide 15: Async signal causes RTL updates
	Slide 16: Program blocks
	Slide 17: Sequence event
	Slide 18: Procedural concurrent assertions
	Slide 19: A timing delay
	Slide 20: Async event causes async event with updates
	Slide 21: Overlapping behavior
	Slide 22: Async timing window
	Slide 23: The Effect and its Cause
	Slide 24: Async event caused by another event
	Slide 25: Overlapping effect-cause
	Slide 26: RTL updated by async event
	Slide 27: Multiple causes for a sequence of events
	Slide 28: Async timing window effect-and-cause
	Slide 29: Summary
	Slide 30: Recommendations
	Slide 31: Questions?

