(2024

DESIGN AND VERIFICATION ™

DVLCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Practical Asynchronous SystemVerilog Assertions

Doug Smith

A

Asynchronous Assertions

module Counter (input Clock,IReset,lEnable, initial begin
Load, UpDn, input [7:0] Data, output [7:0] Q), ... Reset = 1;

always Q@ (posedge Reset or posedge Clock)
if (Reset)

initial forever 1
Clock = #5 ~Clock;

Q <= 0;
else
if (Enable)
if (Load) f
O <= Data: Reset ___
else
/
if (UpDn) Q 6 X_7_JeX 0
Q<=0Q + 1;
else J?

endmodule assert property (@ (posedge Reset) Q == 0);

NS OSESSSSSSS Will this work?

~_SYSTEMS INITIATIVE ™
e —

SystemVerilog Scheduler

From previous time slot 1 Preponed] (Assertion sample values]
_________ N
Active]
$lnactve | * MODULE and
INTERFACE code
NBA schedules events here
— o = e e S — — S
Observed [Assertions evaluated]
{ - ‘_ ______ \
| Reactive PROGRAM code
) . > schedules events here
Re-Inactive

DESIGN AND VERIEICATION™

Postponed

. DV
l—’ TO next t|me Slot CONFERENCE AND EXHIBITION

Difficulty with Async Checking

rmemmed] assert property (Q@ (posedge Reset) Q == 0); 0 Qprev
:) initial begin initial forever
fcivee ... Reset = 1; Clock = #5 ~Clock; Qrev
[Inactive_’
. always @ (posedge Reset ...) 0
NBA © | if (Reset) Q <= O0;
r Observed |
, -~ 0
Reactive_ |
’ [RTL not updated yet!)
Re-mactive]
: rPostponed

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

Difficulty with Async Checking st | Q-

, Preponed] 0 Qprev
—) initial begin always @ (posedge Reset)
ACtIVE oy ... Reset = 1; assert (Q == 0); 1 Qprev
[Inactive_’
— always @(posedge Reset ...) 0
NBA © | if (Reset) Q <= O0;
, Observed |
, ~ 0
Reactive_ |
’ (RTL not updated yet!)
Re-mactive]

2024

DESIGN AND VERIEICATION™

Difficulty with Async Checking

, Preponed] 0 Qprev
Active } lnltlalRIe):gtn_ 1 1 Qprev
Inactive

— always @(posedge Reset ...) 1 0
NBA © | if (Reset) Q <= 0;

, Observed |

. = 1 0
Reactive_ |

, (Checking needs delayed /

Re-mactive]

2024

DESIGN AND VERIEICATION™

Requirements for Async Assertions

. e e SYS READY : : i - e
Deterministic) T .”/ I

. . . PR sy =
Thorough — checks in both directions SYSREADY | | o //&

Portable across simulators

In other words, practical asynchronous assertions

See DVCon 2010 paper, “Asynchronous Behaviors Meet Their Match with
SystemVerilog Assertions,” for other solutions and handling async protocols

https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/

2024

DESIGN AND VERIEICATION™

https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/
https://www.doulos.com/knowhow/systemverilog/asynchronous-behaviors-meet-their-match-with-systemverilog-assertions/

2024

SIGN AND VERIEICATION

Common Methods for
Async Checking

Synchronous, oversampling, or fast clock

FAST CLK
CLK
POR - Z e

SYS_READY -

default clocking cb @ (posedge CLOCK) ; endclocking

OR default clocking cb @ (posedge FAST CLK); endclocking

assert property ($rose(POR) |-> ##[0:5] SYS READY) ; [What about glitches?)

2924

DESIGN AND VERIEICATION™

OVECON

CONFEREMNCE AMND E

Event based methods

POR - Z e
SYS READY @

bit cover por = 0;
cover property (@(posedge POR) 1) cover por = 1;

Then ...

assert property (@ (posedge SYS READY) cover por);

([What if SYS_READY never occurs?

2024

DESIGN AND VERIEICATION™

E)\/[:[:Ihd

NFEREMNCE AND EX|

Pros and Cons

Oversampling
Pro — works with any verification flow (sim, emulation, formal, prototyping)
Con —glitchy RTL behavior may go undetected

Coverage
Pro — easy to write sophisticated scenarios
Con — overlapping events undetected or event never occurs

(Solution? Delay assertion checking ...)

2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

2024

DESIGN AND VERIEICATION™

DVGCGON

CONFERENCE AND EXHIBITION

Cause and Effect

SYSTEMS INITIATIVE

Async signal causes another async event

POR

SYS READY

assert property ((@ (posedge POR) 1 |[-> (@ (posedge SYS READY) 1);

* This is a weak property
* Make it strong

assert property (((posedge POR) 1 |-> (@ (posedge SYS READY) s eventually(l));

2024

DESIGN AND VERIEICATION™

Coverage Alternative or

SYS READY

bit coverage[string];

cover property (((posedge POR) 1)

coverage ["POR"] ++;
cover property ((@ (posedge SYS READY) 1)

coverage ["SYS READY"]++;

coverage [*]

SYS_READY
final begin | Fom | svaRmr
if

(coverage["POR"]) begin 1 1
assert (coverage["SYS READY"] == coverage["POR"]) else |
Serror(...);
end
end Expect a cause for
each effect

2024

DESIGN AND VERIEICATION™

Async signal causes RTL updates

Preponed

. Active
clk |
reset . : : Ic' : : : : : Inactive
a___ 2 A 0_ RTL
NBA
v
assert property ((@ (posedge reset) g ==);X (Observed)
(Inputs from Preponed)
Reactive

_[Need to sample here! J

clk

Program blocks eset

q : 2 e 0

\o\

-
~

(Inputs from Observed] | Preponed |
program async_asserts;) |
initial Active
forever :
@ (posedge reset) (NBA
assert (g == 0);
endprogram) .
Observed
I
[Scheduled in Reactive) Reactive

DESIGN AND VERIEICATION™

clk

Sequence event oset

\O\

O
=0 £
o

sequence seq reset event; , Preponed |
Q@ (posedge reset) 1; ‘ | ’
endsequence Active
I
always , .
@ (seq reset event) assert (g == 0); __ NBA
(Sequence end point in Observed) [Observed |
\ I J
[Reactive]

DESIGN AND VERIEICATION™

Procedural concurrent assertions .

clk |
reset . c Z
(Procedural concurrent assertions mature in Observed) ‘ .' '2 r 5 '
always @ (posedge reset) , ‘
assert property (1) Preponed
assert (g == 0); \ I J
(assert() executes in Observed) (Active
OR) !
NBA
always comb
assert property ((@ (posedge reset) 1) ()
assert (g == 0); lCHBTNedA
[Reactive]

2924

DESIGN AND VERIEICATION™

DV

Async signal causes an RTL update VL UIIN

A timing delay

assign #l1 delayed reset
assert property (((posedge delayed reset) g ==

reset;

Preponed

Preponed

Active

NBA

Active

NBA

assign #lstep delayed reset = reset;
assert property (((posedge delayed reset) g ==

clk

reset .

=0 -

q

=
o

~
-

I

#t

Preponed
|

Active
|
NBA
I

Observed
|

Reactive

|
Postponed

2024

DESIGN AND VERIEICATION™

DVCON

CONFEREMNCE AND EXHIBITION

Async event causes async event with updates

POR

SYS READY

SYSGOOD/ / / / / /)ﬁ,

(Multiclocked property)

assert property (¢ (posedge POR) 1 |-> ((posedge SYS READY) s eventually (1)
| -> @ (posedge SYS GOOD) s _eventually(1l));

Preponed Preponed Preponed
l |]
Active Active Active
I | |
NBA NBA NBA

2024

DESIGN AND VERIEICATION™

I

Overlapping behavior o —— 7 .-

SYS_GOOD %

always comb
assert property ((@ (posedge POR) 1 |-> (@ (posedge SYS READY) s eventually (1))

assert (SYS GOOD == ...);
— (assert() executes in Observed)
Preponed Preponed
Ac':ive Actlive
NIIBA NI:%A
|[Obselrved

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Async timing window

POR
e
sysrReady [F
property prop check timing;
realtime start;
realtime finish;
@ (posedge POR) (1, start = S$realtime) |->
@ (posedge SYS READY) (1, finish = $realtime) ##0
(fEinish - start) == timing window;

endproperty

assert property (prop check timing);

2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

2024

SIGN AND VERIEICATION

The Effect and its Cause

Async event caused by another event

por

SYS READY

bit cov_por;
cover property (
assert property (

(posedge POR) 1) cov por = 1;

@
@ (posedge SYS READY) cov_por);

OR sequence seq past por;
@ (posedge POR) 1 ##1 @ (posedge SYS READY) 1;
endsequence

assert property (((posedge SYS READY) seq past por.triggered);

Not as portable
———— AT

DESIGN AND VERIEICATION™

EEEEEEEEEEEEEEEEEEEEEEE

Overlapping effect-cause

POR
SYS READY .

\CD\ FO\

sequence seq past pgry
@ (posedge POR) 1 [##0|@ (posedge SYS READY) 1;

endsequence

assert property ((@ (posedge SYS READY)

seq past por.triggered);

(Avoid - inconsistent support across tools)

2924

DESIGN AND VERIEICATION™

DV

RENCE AND EXHIBITION

=ASync event causes by another event =

RTL updated by async event

kai

reset .

o SPFo

q - 2

~
-

bit cov_reset;
always ((posedge reset) cov reset = 1;

always comb
assert property (@(g) 1)
assert (cov_reset)
cov_reset = 0;
else Serror (..);

2024

DESIGN AND VERIEICATION™

E)\/E]EJPJ

NFEREMNCE AND EX|

POR
MEM READY
SYS READY

Multiple causes for a sequence of events

s

SYS_GOOD

\O\
—

bit cov _por, cov _mem ready,

cover property
cover property
cover property

assert property

(@ (posedge
(@ (posedge
(@ (posedge

(@ (posedge

cov_sys ready;

POR) l) cov por = 1;
MEM READY) 1) cov_mem ready = 1;
SYS READY) 1) cov_sys_ ready

I
=

SYS GOOD) cov_por &&
cov_mem ready &é&

cov_sys_ready) ; 2024

FIGN-AND VERIEICATION™

EEEEEEEEEEEEEEEEEEEEEEE

Async timing window effect-and-cause

POR e
' — T ns ? ————
SYS_READY . . L—

bit cov_por;

realtime start;

cover property (@ (posedge POR) 1) begin
cov_por = 1;
start = Srealtime;

end

assert property (@ (posedge SYS READY) cov por &&
(($Srealtime - start) <= timing window));

2024

DESIGN AND VERIEICATION™

E)\/E]EJPJ

NFEREMNCE AND EX|

2024

DESIGN AND VERIEICATION™

DVGCGON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

summary

SYSTEMS INITIATIVE

Recommendations

Asynchronous bus protocols
Use multi-clocked properties (usually straightforward)

Asynchronous controls
Oversampling generally good enough
Coverage approach works in most cases (plus bonus of functional coverage)
Other scenarios, find a way to delay the checker’s sampling

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

2024

DESIGN AND VERIEICATION™

DVGCGON

CONFERENCE AND EXHIBITION

Questions?

Examples available at: https://edaplayground.com/x/qB72

SYSTEMS INITIATIVE

	Slide 1: Practical Asynchronous SystemVerilog Assertions
	Slide 2: Asynchronous Assertions
	Slide 3: SystemVerilog Scheduler
	Slide 4: Difficulty with Async Checking
	Slide 5: Difficulty with Async Checking
	Slide 6: Difficulty with Async Checking
	Slide 7: Requirements for Async Assertions
	Slide 8: Common Methods for Async Checking
	Slide 9: Synchronous, oversampling, or fast clock
	Slide 10: Event based methods
	Slide 11: Pros and Cons
	Slide 12: Cause and Effect
	Slide 13: Async signal causes another async event
	Slide 14: Coverage Alternative
	Slide 15: Async signal causes RTL updates
	Slide 16: Program blocks
	Slide 17: Sequence event
	Slide 18: Procedural concurrent assertions
	Slide 19: A timing delay
	Slide 20: Async event causes async event with updates
	Slide 21: Overlapping behavior
	Slide 22: Async timing window
	Slide 23: The Effect and its Cause
	Slide 24: Async event caused by another event
	Slide 25: Overlapping effect-cause
	Slide 26: RTL updated by async event
	Slide 27: Multiple causes for a sequence of events
	Slide 28: Async timing window effect-and-cause
	Slide 29: Summary
	Slide 30: Recommendations
	Slide 31: Questions?

