
1

What’s New in IEEE 1801 and Why?

Progyna Khondkar

Cadence Design Systems

Austin Texas

progyna@cadence.com

Abstract- The IEEE-1801 standard or Unified Power Format (UPF) is the ultimate abstraction necessary to enable the low power

methodologies today. It provides the concepts and the artifacts of power management architecture, power aware verification and low

power implementation mechanisms for any design! However, adoption of UPF and adherence to the semantics for a given design is

not straightforward. Specifically the diversified power reduction schemes, different design characteristics and target applications of

the design, as well various versions (releases) and variations of UPF standards makes UPF adoption painfully difficult. Interestingly

a new UPF standard release does not necessarily prohibit the previous release and all variations of UPF (Accellera 1.0, IEE1801 2.0,

2.1, 3.0 and 3.1) are widely used in semiconductor industries and embraced by EDA tools. UPF is used pervasively throughout the

flow from linting, verification (simulation, emulation), logic equivalence checking and implementation (synthesis, P&R). Obviously,

the questions arises why so many versions of standards (LRMs)? This is mainly because of correction, amendment, extensions of

semantics and addition of new syntax-semantics to enable new functionality. The changes are there because either the previous

version was incomplete, misleading, error prone, easily mis-interpretable or found lacking while adopting/implementing in

verification tools. This paper attempted to explain why a new standard is necessary, by pointing out the exact deficiency of previous

LRMs (predecessors) with examples, as well show how the upcoming new LRM UPF 4.0 fulfilling those inadequacies based on issues

found on UPF 3.1 or other older releases.

Keywords—IEEE 1801, UPF, LRM, Semantical Syntactical changes, new commands options.

I INTRODUCTION

The Unified Power Format (UPF) also known as IEEE-1801 is not just a language to denote low power intents or

power specifications for a design – it’s a complete command set for designing and verifying such low power designs. The

UPF is the ultimate abstraction necessary for today’s low power methodologies. It provides the concepts and the artifacts

of power management architecture, power aware verification and low power implementation for any design.

UPF is tcl based language that is defined separately from the HDL but has strong correlation with underlying

HDL of the design. It provides the notions of power architecture from very early stage of design abstraction. Now it’s the

industry standard for lowering static and some special cases dynamic power dissipation in every digital design.

Overwhelmingly UPF stands out as the primary choice of lowering power dissipation when fabrication process technology

advanced below 25nm. UPF based low power verification and design implementation are reality today.

As the design abstraction phase’s progress through implementation phases (from RTL to PG-netlist at P&R stage),

UPF plays vital roles in guiding how the physical structure of the design will adopt the low-power entities. For example,

during simulation or emulation, the UPF guides power states of supply set, power domain’s primary, simstate, and

modeling of power shutoff. UPF defines the locations & types of isolation, level-shifter, and retention cells in the design.

During P&R the UPF further guides the power switch cascaded implementation, and complete power, ground, bias supply

connectivity of all low-power cells (like power switch, isolation, level-shifter etc.). There are several static and dynamic

power reduction schemes, like power gating, body biasing, low power standby, multi-voltage design, dynamic and/or

adaptive voltage scaling etc. that fall within the realm of UPF. Further the power specification of each designs or intents are

governed by its construction, architecture and by the target applications of the design, like CPU cores, IPs, SoCs, ASICs,

IoTs that all have their own perspective to adopt one or multiple power reduction schemes. Despite its vital roles in overall

power managements of VLSI designs, adoption of UPF and adhering to the semantics for a given design is not

straightforward.

Part of this complexity is that the UPF LRM (language reference manual) itself has different versions and

variations of releases from UPF 1.0 (Accellera initiative in 2007), UPF 2.0 (IEEE 1801-2009), UPF 2.1 (IEEE 1801-2013),

UPF 3.0 (IEEE 1801-2015) and UPF 3.1(IEEE 1801-2018). These variations have evolved over time to meet the demands

of new low power designs. Each release is designed to build on its predecessors but are not necessarily backward

compatible and can vary widely semantically and moderately syntactically. Interestingly a new release does not

unavoidably prohibit the previous release and all variations of UPF - 1.0 through 3.1 are widely used in industries and

embraced by various EDA tools(linter, verification, logic equivalence checker or implementation tool).

Furthermore, UPF 4.0 (IEEE 1801-2024), will be released towards the end of this year 2024 or early 2025. UPF

4.0 obviously has numerous changes, specifically from UPF 3.1 as well from all previous LRMs.

This paper attempted to explain why a new standard is necessary, by pointing out the exact deficiency of previous

LRMs (predecessors) with examples, as well show how the upcoming new LRM UPF 4.0 fulfilling those inadequacies

based on issues found on UPF 3.1 or other older releases.

mailto:progyna@cadence.com

2

A. Motivation and Contribution of this Paper:

The primary objective of this paper is to simplify UPF adoption for any design despite of considering every

complex decision process like which UPF LRM version should be picked, does it have impact on target design application,

should this UPF release supports all the power reduction schemes, does front-end linting, verification (simulation and

emulation), and back-end (synthesis and P&R) implementation, logic equivalent checker tools have consistent UPF support

and so on. We clearly articulate how to simplify the adoption of UPF for any design, and design abstraction phase and any

tool. We started our discussion from historical perspective and release timeline of different UPF versions from 1.0 to

upcoming 4.0, along with comprehensive examples to compare prior standards solutions or gaps to newer improvements.

We have explained every requirements of new syntax & semantics as well high-light backward compatibility issues and

adoption challenges so that the paper could help audience more easily absorb the key aspects of UPF. We hope this paper,

will serve as reference point for UPF adoption and implication of highly efficient low power verification and

implementation platform.

B. Organization of this Paper:

This paper is organized in the following structure. Section I formulate the criticality of adoption of UPF and

adherence to the semantics for a given design. Section II shows the historical perspective and timeline of UPF releases.

These section also illustrate why a new LRM is required through explaining missing feature of ancestor and new

capabilities of successor. Section III focus on UPF commands and options from upcoming UPF 4.0 and shows highlevel

views of all the 6 LRMs. The final sections IV draws the conclusion and points out which release to adopt for a design. The

references are shown at the end.

II HISTORICAL PERSPECTIVE AND TIMELINE FOR UPF RELEASE

A. The Concept of UPF and Simple Power Intent: UPF 1.0

In early 2007, the Accellera Systems Initiative introduced the UPF, also known as UPF 1.0. The fundamental

concept of UPF 1.0 is to allow users to define and manage power for any design without any direct interference on the

design itself- that is the golden HDL references. UPF or the power intent or the power specification can directly be overlaid

on the HDL designs through EDA tools. The methodological approach of UPF abstractly model the exact power supply

networks, voltage values, power area distributions, voltage protection circuitry and corresponding power states for the

design. These methodologies are based on power specification or intent at the RTL and allow designers to manually refine

the power network distributions of voltage areas (power domain boundaries) throughout the entire design implementation

flow. Specifically manual changes are required at the post synthesis and post P&R levels of design abstraction with UPF

1.0.

The early UPF 1.0 initiatives were mostly driven from the physical design perspective in terms of explicit power

supply networks - the supply ports, supply nets, their port states and possible combinations of supply states. These physical

entities are mostly absent at the RTL or higher levels of design abstraction, unless the design has already been rolled out for

synthesis and P&R. That means, supply ports (VDD, VSS), nets (vdd, vss), voltage values (VDD 1.2 volt), port states (ON,

OFF), voltage protection circuitry (Isolation, Level-shifter, Retention, Power Switch etc.), extent of domain boundary

(extents of hierarchical instances), control ports (Iso enable, Save-Restore ports), combination of supply mode, etc. are the

minimum ‘objects’ required for developing power intents (UPF files) based on UPF 1.0. Hence, it is distinctly clear that

most of these UPF objects needed to be collected from post-synthesis gate-level netlist, Liberty libraries and even P&R

power-ground (PG) netlist.

Figure 1 Concept of UPF Overlaying on HDL Blocks and Simple Power Intent UPF 1.0

So, UPF 1.0 contradicts the original power management and verification objectives – that intended to start from

RTL. It pose unwanted dependency on backend design flows - that possibly should begin independently at least from the

RTL. Explicit requirements of supply-port, supply-net and possible values of supply port also known as power state (actual

terminology is power state table or PST) was targeted to deliver a system. This approach appeared more practical for post

3

synthesis power management. Because PST states are defined based on ‘supply net state’ only, which requires knowledge

from liberty and coordination with post synthesis designs. Nevertheless, UPF (or UPF 1.0) became very popular and

successful for introducing low power objects in a design without touching or modifying the HDL design. It worth to

mention that before UPF, any low power implication on a design required direct modification in HDL. Table 1 shows the

categories and actual syntax of UPF commands that became available in UPF 1.0.

Table 1 UPF 1.0 Syntax for Power Management, Verification and Implementation
Navigation Supply Nets Power Domains Power States Strategies Implementation HDL Interface Management

set_scope

set_design_top

create_supply_port

create_supply_net

connect_supply_net

create_power_switch

create_power_domain

set_domain_supply_net

add_port_state

create_pst

add_pst_state

set_retention

set_retention_control

set_isolation

set_isolation_control

set_level_shifter

map_retention_cell

map_isolation_cell

map_level_shifter_cell

map_power_switch_cell

bind_checker

create_hdl2upf_vct

create_upf2hdl_vct

upf_version

load_upf

save_upf

B. The IEEE Standard and Concept of Supply Set: UPF 2.0

In 2009, the IEEE Standard Organization published the IEEE-1801-2009 or UPF 2.0, the first standard

methodology for implementing power intent, truly targeted for RTL but also equally applicable to the rest of the design

abstraction levels (e.g. Synthesis and P&R level). UPF 2.0 brought three major phenomenal changes from UPF 1.0. The

first one was the introduction of a concept known as “supply set” – which is actually a collection of supply nets that provide

a power source. UPF 2.0 introduced the create_supply_set & associate_supply_set –handle commands, which defines the

supply set. It also abstracts power, ground and bias (nwell, pwell) functions and allows referencing to supply set and its

handles. The second one was allowing progressive refinement of previously defined UPF objects with –update in most

categories of UPF commands. The –update eventually eliminated the manual refinement process required in UPF 1.0 when

design abstraction phases transitioned from RTL to Synthesis to P&R. The third one was replacing power state table PST -

that comprise of a combination of three commands- add_port_state, create_pst, add_pst_state with a single

add_power_state command. The add_power_state not only concise the sets of PST commands, but also allows to denote

power states of a supply set (PD.primary in terms of –supply_expr{}), power domains (PD in terms of –logic_epxr{}),

refine previously defined power states through –update as well allows to capture complex power state relationships like

hierarchical states dependencies, which were evidently missing in UPF 1.0. All these new concepts accommodate smooth

power management schemes from RTL - much better than that of UPF 1.0.

Figure 2 shows the basic concept and construction of supply set that comprise of a bundle of six predefined power

supply function - power, ground, nwell, pwell, deepnwell and deeppwell.

power

ground

FunctionsSupply Nets Supply Set

power

ground

nwell

PD.primary

Main

pwell

deepnwell

deeppwell
Figure 2 Basic Construct of Supply Set

Supply sets are created in a logic scope using create_supply_set command. Local supply set handles (local

supplies) are created for power domain using create_power_domain PDTop –supply {}. The abstract supply set network

is formed by associating global supply sets with local supply set handles. The primary supply set handle is automatically

created for each power domain e.g. PDTop.primary. In addition, supply set for isolation and retention is also created for

PDTop.default_isolation and PDTop_defult_retention. However, they are deprecated later UPF 3.0 due to semantical

conflicts hence they are not recommended to use anymore. User can create additional supply set handles within a power

domain as shown in snippet below.

Example 1: Supply set handles in power domain
11 create_supply_set aon_ss –update –function {nwell}

12 create_power_domain PDTop –elements inst1\

...

21 -supply { ret_ss backup_ss . . .} \

22 -supply { backup_ss aon_ss}

 It is possible to add additional supply_set handles like PDTop.backup_ss and PD_Top.ret_ss using –supply as

shown in line 21 and the associate PDTop_backup with another supply_set aon_ss as shown in line 22. In general, a supply

set handle is considered “a local supply set” and the handle can be referenced where needed within the power domain. The

supply_set created is also available to other child domains. Apart from supply set, Table 2a and 2b shows the categories

4

and actual syntax of UPF commands that became available from UPF 2.0 (green color text) on top of the existing UPF 1.0

commands (black color text).

Table 2a UPF 2.0 Syntax for Power Management Power Management, Verification and Implementation
Navigation Supply Nets Power Domains Power States Strategies Implementation

set_scope

set_design_top

create_supply_port

create_supply_net

connect_supply_net

create_power_switch

create_power_domain

-update

set_domain_supply_net

create_composite_domain –

update

add_port_state

create_pst

add_pst_state

add_power_state

-update

describe_state_transition

set_retention

set_retention_control

set_isolation

set_isolation_control

set_level_shifter

set_retention_elements

all with –update

map_retention_cell

map_isolation_cell

map_level_shifter_cell

map_power_switch_cell

use_interface_cell

Table 2b UPF 2.0 Syntax for Power Management Power Management, Verification and Implementation
HDL Interface Code Management Supply Sets Attributes Control Logics Simstate

bind_checker

create_hdl2upf_vct

create_upf2hdl_vct

upf_version

load_upf

save_upf

load_upf_protected

load_simstate_behavior

find_objects

create_supply_set

supply set handles

associate_supply_set

connect_supply_set

all with –update

set_port_attribute

set_design_attribute

HDL and Liberty

Attributes

create_logic_port

create_logic_net

connect_logic_net

set_simstate_behavior

add_power_state

The addition of supply set (create_supply_set, associate_supply_set, connect_supply_set etc.), new power state

(add_power_state) and refinements of previously defined UPF objectives through –update in UPF 2.0 enriched power

management adoption schemes and verification mechanism on any designs. However, many of the semantics were

premature and semantics and (or) syntax were incomplete to deploy UPF in every level of design abstraction coherently. It

was evident at this point that UPF is essential to manage or mitigate power on any design however UPF was still evolving

for its maturity.

UPF 2.0 is backward compatible with UPF 1.0 (create_supply_set, supper set of supply port, net). It has supports

for IP development, refinement (add_power_state, create_logic_port, and –update). Following are notable changes in UPF

2.0 from UPF 1.0 – to start verification from RTL

• Introducing create_supply_set & associate_supply_set –handle

• Abstraction of power, ground and bias (nwell, pwell) functions

• Reference to supply set and handles

• Introducing -update in many UPF commands

• Refinement of UPF objects as progressing through design phase transition

• Replacing Power State Table with add_power_state command

• add_port_state, create_pst, add_pst_state replaced with add_power_state

All these helps to start power management from higher level of design abstraction (RTL)

C. The Evolution of IEEE 1801 Standards: UPF 2.1

 The actual evolution of UPF specifically started from IEEE Standard 1801-2013 or UPF 2.1 published in May

2013. Because UPF 2.1 brought more semantical clarification that were missing or incomplete in UPF 2.0 and UPF 1.0,

than introducing new set of commands and options. As a consequence, UPF 2.1 also labelled some UPF 1.0 & 2.0

commands (and options) as “obsolete” or “legacy” (red color texts) and discourage their usage on semantical ground to

avoid conflicts and confusion.

Table 3a UPF 2.1 Syntax for Power Management Power Management, Verification and Implementation
Navigation Supply Nets Power Domains Power States Strategies Implementation

set_scope

set_design_top

create_supply_port

create_supply_net

connect_supply_net

create_power_switch

create_power_domain

-update

set_domain_supply_net

create_composite_domain –

update

add_port_state

create_pst

add_pst_state

add_power_state

-update

describe_state_transition

set_retention

set_retention_control

set_isolation

set_isolation_control

set_level_shifter

set_retention_elements

all with –update

set_repeater

map_retention_cell

map_isolation_cell

map_level_shifter_cell

map_power_switch_cell

use_interface_cell

Table 3b UPF 2.1 Syntax for Power Management Power Management, Verification and Implementation
HDL Interface Code Management Supply Sets Attributes Control Logics Simstate Power Management Cell

bind_checker

create_hdl2upf_vct

create_upf2hdl_vct

upf_version

load_upf

save_upf

load_upf_protected

load_simstate_behavior

find_objects

begin_power_model

end_power_model

apply_power_model

create_supply_set

supply set handles

associate_supply_set

connect_supply_set

all with –update

set_equivalent

set_port_attribute

set_design_attribute

HDL and Liberty

Attributes

create_logic_port

create_logic_net

connect_logic_net

set_simstate_behavior

add_power_state

define_always_on_cell

define_diode_clamp

define_isolation_cell

define_level_shifter_cell

define_power_switch_cell

define_retention_cell

Following major changes came in UPF 2.1

• Clarify Repeater insertion and verification (set_repeater) Vs SPA –repeater_supply

• Also create_power_domain –available_supply for Verifying Supply Constraints

5

• Atomicity of power domains for soft IP (create_power_domain –atomic)

• Hard Macro Modeling, Integration & Verification

• (begin_power_model~end_power_model, apply_power_model)

• Protection (Isolation) cell at Hard Macro Boundary (HighConn, LowConn Concept)

• Supply Equivalence supply_equivalent

• Power Management Cell modeling commands (define_* Vs SPA)

• Precedence of Strategies ret, repeater, iso, ls

• Retention Semantics (Balloon Vs Master-Slave)

• PST became legacy

In UPF 2.0, modeling hard IPs or macros was difficult – it requires power domain, related supplies, etc. Such spec

were directives for verification, as well implementation –which is deviation from ultimate UPF objectives. UPF 2.1

introduces begin/end_power_model and that defines the power intents or UPF for hard IP to provide the boundary

concepts for hard macros. begin/end_power_model explicitly became descriptive to imply that, it describe the power

intent of hard IP for validating in the SoC environment. At implementation this will automatically ignore the commands

within a power model. UPF 2.1 also introduces, apply_power_model for easy association of the model to design binds to

an instances in the design and connects the interface supply set handles and logic ports of a previously loaded power model.

Another important changes came in 2.1 is set_equivalent, which defines when supply set or supply net are

electrically or functionally equivalent. UPF strategies needs to match -source -sink filtering of supplies for strategies like

ISO, LS etc. There was no such semantics for supply matching in UPF 2.0 that explicitly defines supply equivalence.

set_equivalence is the rules of matching of supplies and make tool consistent on strategies like set_isolation,

set_level_shifter and set_repeater will by default use supply equivalence that helps to determining which ports be isolated

when filtering is specified with a -sink or -source or -diff_supply_only filters, shown in Figure 3.

Src_PD

PD1 (ss1)

PD2 (ss2)

PD3 (ss3)

Isolation with UPF 2.0

UPF 2.1

create_supply_set ss1

create_supply_set ss2

create_supply_set ss3

set_equivalent -sets { ss1 ss2 }

create_power_domain pd1 -supply {primary ss1}

create_power_domain pd2 -supply {primary ss2}

create_power_domain pd3 -supply {primary ss3}

set_isolation iso \

-sink ss1 \

... Other options ...

Src_PD

PD1 (ss1)

PD2 (ss2)

PD3 (ss3)

Isolation with UPF 2.1

Figure 3 set_equivalnce correctly determines isolation for PD1 and PD2

UPF 2.1 also introduces definitions for power management cells like isolation, level shifter, power switch, as well

always on and diode cell as UPF commands (define_always_on, define_diode_cell etc. as shown in Table 3a). In previous

release with UPF 2.0, set_port_attribute provides some liberty attribute but not all. Hence user required liberty files (.lib)

at front end RTL simulation to specify any liberty attributes. However, these defined cells do not alter the existing library

cell definitions. When the liberty libraries are available, these commands can be leveraged by verification tools to perform

accurate verification, that closely matches the implementation results.

D. The Information Model of IEEE 1801 Standards: UPF 3.0

UPF 3.0 standard was released in December 2015 which clarifies and enhances UPF 2.1 features (new semantic of power

model), adds a few new capabilities (SPA is_analog, -parameter for bind_checker, UPF Info Model). Table 4a and 4b

highlights new syntax came in UPF 3.0. UPF information model (UPFIM) introduces a concept model that captures

“Power-management Information” from “UPF semantics” on a “design”.

6

UPF HDL

Design
+

Power Management

API
HDL

TCL

Information

Model Database

Figure 4 UPF 3.0. introduces UPF information model (UPFIM)

The UPFIM contains information from UPF objects and user Design (i.e. HDL Objects). Note that UPF power

domain, supply sets, design groups, design models, design instances are collectively known as UPF Objects. The model

allows to access (read/write) the Information through HDL and Tcl API. These Tcl/HDL Package API functions allows to

develop variety custom, productive and intuitive of PA debug & verification applications. These applications can be run

both at static time, to get static information or post sim to get both static and dynamic data.

Following shows some example applications on UPFIM that helps to catch low power bugs at RTL:

• Source of Corruption/Retentions of a Signal (static properties)

• Find the current state of a power domain (dynamic properties)

• Custom Debug and Verification Reporting

• Coverage using HDL Package Functions (Random Directed Coverage)

o e.g. Isolation/retention/level-shifter control signal coverage

o e.g. Power States and Power State Transitions coverage

• Assertions for error scenarios

o e.g. if two power domains are in mutually exclusive states

o Based on UPF 3.0 Property types; User functions need to be created

Table 4a UPF 3.0 Syntax for Power Management Power Management, Verification and Implementation
Navigation Supply Nets Power Domains Power States Strategies Implementation Variation/Correl.

set_scope

set_design_top

create_supply_port

create_supply_net

connect_supply_net

create_power_switch

create_power_domain

-update

set_domain_supply_net

create_composite_domain

–update

add_port_state

create_pst

add_pst_state

add_power_state

-update

describe_state_transition

add_supply_state

add_state_transition

create_power_state_group

set_retention

set_retention_control

set_isolation

set_isolation_control

set_level_shifter

set_retention_elements

all with –update

set_repeater

map_retention_cell

map_isolation_cell

map_level_shifter_cell

map_power_switch_cell

use_interface_cell

set_correlated

set_variation

Table 4b UPF 3.0 Syntax for Power Management Power Management, Verification and Implementation
HDL Interface Code Management Supply Sets Attributes Control Logics Simstate Power Management Cell

bind_checker

create_hdl2upf_vct

create_upf2hdl_vct

upf_version

load_upf

save_upf

load_upf_protected

load_simstate_behavior

find_objects

begin_power_model

end_power_model

apply_power_model

add_parameter

create_supply_set

supply set handles

associate_supply_set

connect_supply_set

all with –update

set_equivalent

set_port_attribute

set_design_attribute

HDL and Liberty

Attributes

create_logic_port

create_logic_net

connect_logic_net

set_simstate_behavior

add_power_state

define_always_on_cell

define_diode_clamp

define_isolation_cell

define_level_shifter_cell

define_power_switch_cell

define_retention_cell

Following are major Changes from UPF 2.1 to UPF 3.0

• New semantic of power model with begin/end_power_model represent

• Both Hard or Soft macro with {UPF_is_hard/soft_macro TRUE} attributes.

• New power model semantics also provides boundary concept for both Hard and Soft macros

o For both macros – parents context will not be allowed to modify UPF inside the macros

o Because for Hard macro – its obvious, already implemented.

• But for Soft macro – UPF is intended for separate implementation, and therefore the soft macro interface is still

treated as a hard boundary

• So, in UPF 3.0 - a power model instantiated in a design can only be modified by the parent context when

UPF_is_hard_macro or UPF_is_soft_macro both are FALSE.

7

In addition UPF 3.0 also added new syntax and obviously new semantics for) create_power_state_group –

which defines a group name used in conjunction with the add_power_state command to give controllability/flexibility. A

power state group is used to collect related power states defined by add_power_state. The -group (<group_name>) is

defined in the current scope. The power state group defines legal combinations of power states in current scope and/or

from the descendant subtree represents combinations of power states that can be active at the same time. Following Figure

4 shows a generic SoC and UPF example showing create_power_state_group for the SoC.

Grouping of legal Power States

create_power_state_group PD_SOC

add_power_state -group PD_SOC \

 -state {RUN -logic_expr {primary==ON && PD_L2==RUN && PD_COREA==RUN}} \

 -state {DMT -logic_expr {primary==OFF && PD_L2==RUN && PD_COREA==SHD}} \

 -state {SHD -logic_expr {primary==OFF && PD_L2==SHD && PD_COREA==SHD}}

 -state {RET -logic_expr {primary==OFF && LP_RET1N == 1'b1 PD_COREA == OFF}} \

 -state {OFF -logic_expr {primary==OFF && LP_RET1N == 1'b0 PD_COREA == OFF}}

add_power_state -group PD_SOC -update \

 -state "RET.PD_CPUA0_ACT -logic_expr {PD_COREA.PD_CPUA0.ACT} -illegal" \

 -state "OFF.PD_CPUA0_ACT -logic_expr {PD_COREA.PD_CPUA0.ACT} -illegal"

Figure 4 UPF 3.0 example showing create_power_state_group for an SoC.

UPF 3.0 also introduces bind_checker – a mechanism by embedding the binding of the design and checker within

the UPF/Tcl file through the bind_checker command. The bind_checker allows to model assertions that are distinctively

different from SystemVerilog assertions in that they can access all the UPF objects – i.e. UPF power supply, power states

etc.

E. More Evolution of of IEEE 1801 Standards: UPF 3.1

 UPF 3.1 standard was released on September 2018 mostly adhering to correcting and enhancing UPF 3.0 features

like path based strategies from port base, new precedence rules, as well adding new capabilities in UPFIM, power model,

hard and soft macro, terminal boundary and find_objects. Not all these changes necessarily turned into new syntax but only

few to name like new commands for verification (simulation & emulation control) shown in Table 5c.

Table 5a UPF 3.1 Syntax for Power Management Power Management, Verification and Implementation
Navigation Supply Nets Power Domains Power States Strategies Implementation Variation/Correl.

set_scope

set_design_top

create_supply_port

create_supply_net

connect_supply_net

create_power_switch

create_power_domain

-update

set_domain_supply_net

create_composite_domain

–update

boundary_supplies

add_port_state

create_pst

add_pst_state

add_power_state

-update

describe_state_transition

add_supply_state

add_state_transition

create_power_state_group

set_retention

set_retention_control

set_isolation

set_isolation_control

set_level_shifter

set_retention_elements

all with –update

set_repeater

map_retention_cell

map_isolation_cell

map_level_shifter_cell

map_power_switch_cell

use_interface_cell

set_correlated

set_variation

Table 5b UPF 3.1 Syntax for Power Management Power Management, Verification and Implementation
HDL Interface Code Management Supply Sets Attributes Control Logics Simstate Power Management Cell

bind_checker

create_hdl2upf_vct

create_upf2hdl_vct

upf_version

load_upf

save_upf

load_upf_protected

load_simstate_behavior

find_objects

begin_power_model

end_power_model

apply_power_model

add_parameter

create_supply_set

supply set handles

associate_supply_set

connect_supply_set

all with –update

set_equivalent

set_port_attribute

set_design_attribute

HDL and Liberty

Attributes

literal_supply

exclude_model

exclude_elements

create_logic_port

create_logic_net

connect_logic_net

set_simstate_behavior

add_power_state

define_always_on_cell

define_diode_clamp

define_isolation_cell

define_level_shifter_cell

define_power_switch_cell

define_retention_cell

Table 5c UPF 3.1 Syntax for Power Management Power Management, Verification and Implementation
Verification Control

sim_assertion_control Control the behavior of assertions during low-power verification

sim_corruption_control Provides the ability to disable the corruptions of a specific set of design elements or types of design elements

sim_replay_control Specify initial blocks to be replayed when a domain powers up (mostly for simulation).

Following are major features changes in UPF 3.1from UPF 3.0

• Clarifies and enhances UPF 3.0 features (Path base strategy association, precedence rules)

• Adds a few new capabilities (UPF Info Model, Power Model, Hard & Soft Macro)

• begin/end_power_model (became legacy) and

o New define_power_model introduced

o apply_power_model remains with newly introduced option -port_map

8

These two binds power model to design and connects the interface supply set handles and logic ports of a previously

loaded power model. The -port_map defines how the interface logic port or supply ports of the instance scope connects

with logic nets or supply nets in the current scope respectively. The apply_power_model command supports two modes of

operation:

• For system level IP power modelling:

o Binds a system level IP power model to a cell instance within a design and binds parameter defined

within that power model to objects within the environment

• For supply set connections:

o Describes the connections of the interface supply set handles of a previously loaded power model with

the supply sets in the scope where the corresponding macro cells are instantiated.

UPF 3.1 also addresses SV LRM IEEE1800 violations of 3.0 handle upfHandleT data type by mapping it from

chandle to System Verilog int. UPF 3.0 defines upfHandleT to access objects and properties in the UPFIM upfHandleT is

constructed as a member of “struct { }” in HDL API.

Why IEEE 1800 (SV) LRM Violation Occurred in UPF 3.0 LRM usage?

• While representation of upfHandleT in Native HDL in UPF 3.0 LRM upfHandleT to HDL mapping is

done with ‘chandle’ data type for SV.

• chandle data type represents storage for pointers passed using the DPI.

• IEEE 1800 imposes restrictions on where chandle type can be used, for e.g. chandle cannot be used as

ports, in sensitivity lists or event expressions, in continuous assignments etc.

• This in turn limits the intended use cases of the SV HDL API functions to develop apps that will get

expected data from UPFIM.

Table 6 UPF 3.1 addresses issues of 3.0 with upfHandleT

UPF 3.0 UPF 3.1

struct {

 upfHandleT handle;

 upfPowerStateObjT

 current_state;

 } upfPdSsObjT

struct packed{

 upfHandleT handle;

 upfPowerStateObjT current_state;

 upfSimstateE

 current_simstate;

 } upfPdSsObjT

Here packed array allows int type, which makes implementation independent packing of members and easy access.

In addition by extending upfPdSsObjT as native HDL type, 3.1 also allows HDL API to qualify for getting dynamic

objects for simstate.

F. Furthermore Evolution of IEEE 1801 Standards: Coming in UPF 4.0

UPF 4.0 which is probably coming in early 2025, is mainly known to have a completely new feature for analog

and mixed signal (AMS) for connecting and modeling supply nets across the analog/digital boundary. Specifically HDL

supply tunnelling and value conversion mechanism (VCM). There are other with several changes in digital or regular part,

such as ‘Retention Strategies’, ‘Power Models’, ‘Supply Set/Net’, ‘Precedence Rules’ etc. which are mainly based on

implementing additional requirements that were revealed by real world usage of the earlier versions of the standard. Table 7

shows changes in retention strategy. The retention strategies are a great example of adapting to changing requirements. The

UPF3.x semantics could not describe the more complex and varied behavior of the plethora of modern retention cells. The

UPF4.0 semantics were created from the ground up to provide a more complete and accurate representation of these cells.

Table 7 UPF 4.0 Changes in Retention Strategy

On the other hand, there are several completely new UPF commands added in 4.0 as listed in Table 8 below.

Table 8 UPF 4.0 New Commands

Newly Added Options in UPF 4.0 Obsolete/Legacy from UPF 4.0

[-applies_to <flop | latch | any>]

[-save_event_condition]

[-restore_event_condition]

[-powerdown_period_condition]

[-restore_period_condition]

[-async_set_reset_effect <ignored | retained_value | output_value>]

[-retention_power_net net_name]

[-retention_ground_net net_name]

[-save_condition]

[-restore_condition]

[-retention_condition]

Newly Added Commands in UPF 4.0 Brief Outline

9

Similarly, there are more commands and options added for adopting new concepts like refinable macros, virtual

supplies etc. Table 9 summarizes major focus of each releases which in fact gives clear understanding how each releases

are different from each other as well how they are interconnected or interdependent.

Table 9 Brief overview of different versions of the UPF Releases (Language Reference Manual) and its Focus

Release Year Standard Major Focus on the Release
UPF 1.0 Feb 2007 Accellera - Focused on adding power intent to HDL (VDD, VSS i.e. supply net and supply port)

- Relatively simple concepts and commands (add_port_state, add_pst_state, create pst for PST)

UPF 2.0 March 2009 IEEE 1801 - Backward compatible with UPF 1.0 (create_supply_set, supper set of supply port, net)

- Supports IP development, refinement (add_power_state, create_logic_port, and –update)

UPF 2.1 March 2013 IEEE 1801 - Clarifies and enhances UPF 2.0 features (set_repeater, master/slave 0 pin RET, set_equivalent)

- Adds a few new capabilities (define_always_on_cell, define_diode_clamp_cell & others ISO)

UPF 3.0 Dec 2015 IEEE 1801 - Clarifies and enhances UPF 2.1 features (new semantic of power model)

- Adds UPFIM & new capabilities (SPA is_analog, -parameter for bind_checker)

UPF 3.1 Sept 2018 IEEE 1801 - Clarifies and enhances UPF 3.0 features (Path base strategy association, precedence rules)

- Adds a few new capabilities (UPF Info Model, Power Model, Hard & Soft Macro)

UPF 4.0 TBD IEEE 1801 - Clarifies and enhances UPF 3.1 features (Retention, Refinable macro, Virtual supply, power model)

- Adds a few new capabilities (AMS, VCM,)

CONCLUDING REMARKS

We started this paper with simple question: why so many versions of standards (LRMs)? We have clearly came to

a conclusion that the obvious answer of the questions must be - this is mainly because of correction, amendment, extensions

of semantics and addition of new syntax-semantics which were previously either incomplete, misleading, error prone, easily

mis-interpretable or found impossibilities while adopting/implementing in verification tools and so on. This paper attempts

to explain why a new standard is necessary, by pointing out the exact deficiency of previous LRMs (predecessors) with

examples, as well show how the upcoming new LRM UPF 4.0 fulfilling those inadequacies based on issues found on UPF

3.1 or other older releases. As the IEEE standard itself evolved overtime, providing additional abstraction flexibility for the

other rudimentary parts of design elements, like supply set, supply networks, and supply states for design groups, models,

and instances, collectively known as objects. Some of the amendments are reflected in IEEE Standard 1801-2013 or UPF

2.1 published in May 2013, while the latest update is available in IEEE Standard 1801-2015 or UPF 3.0 published in

December 2015.

However, it is important to note that each amendment is not necessarily backward compatible and each updated

version is usually a superset of semantic and syntactic expressions from its predecessors. The abstraction of UPF 3.0 or

UPF 3.1 in general, methodically consists of power specifications that categorically itemize the design elements for a

particular power block, known as a power domain (PD), along with the PD boundaries. Further, it also specifies the power

supply and supply states of the power domains or supply sets, whether the supply is in On, Off, or other potential states.

Depending on the power management and reduction techniques the specification adopts for the final chip, the list further

extends to specify the requirements of boundary strategies for intra or inter-domain communications. These strategies may

include isolations (ISO), level-shifters (LS), enable level-shifter (ELS), always-on buffers (AOB), feed through buffers or

repeaters (RPT), diode clamps, retention flops (RFF), power switches (PSW), and their corresponding supply network and

locations details. In short, the UPF is a precise map that models the power specification of the design and converts the same

to a power aware design.

Although UPF is very well defined through IEEE 1801 LRM, it is often difficult to comprehend many primitive

and inherent features of individual UPF commands-options or relations between different varieties of UPF commands-

options. The semantic context between most of the UPF commands are orthogonal. However, fundamental constituent parts

of UPF that buildup the power management architecture are inherently linked because of their transitive nature —

specifically the UPF commands that establish the links with DUT objects; like instances, ports, and nets, etc. In this paper,

we provide a simplistic approach to find inherent links between UPF commands-options through their transitive nature. We

also explain how these inherent features help to foster and establish exact relationships between UPF and DUT objects in

order to develop UPF for power management and implementation as well as conduct power aware verification.

REFERENCES
[1] Progyna Khondkar, “Low-Power Design and Power-Aware Verification”, Hard Cover ISBN: 978-3-319-66618-1, October, 2017, Springer

International Publishing.
[2] Progyna Khondkar, et al., “How UPF 3.1 Reduces the Complexities of Reusing Power Aware Macros" March, DVCon 2020.”

[3] Progyna Khondkar, et al., “Low Power Coverage: The Missing Piece in Dynamic Simulation”, February

 March, DVCon 2018.

[4] Progyna Khondkar, et al., “Free Yourself from the Tyranny of Power State Tables with Incrementally Refinable UPF”, February
 March, DVCon 2017.

[5] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power,

create_abstract_power_source

create_vcm

create_upf_library

load_upf_library

use_upf_library

map_retention_clamp_cell

Defines abstract model of power source of supply sets

AMS value conversion methods for connecting UPF supply nets and HDL ports

A container to create_vcm

Execute commands from specified UPF library

Relevant to UPF library to make UPF object visible to current scope

Allows list of liberty cells used for constraints of clamps on clock path

10

 Energy-Aware Electronic Systems”, IEEE Standards 1801-2015, 5 December 2015.
[6] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power, Energy-Aware

Electronic Systems”, IEEE Std. 1801™-2018.

