A Hybrid Verification Approach for Cache
Coherent Systems: Functionality and
Performance

Jiang-Tang Xiao, Osmond Yao
MediaTek Building E, No.8, Dusing 1st Rd., Hsinchu Science Park, Hsinchu City 300, Taiwan
Jiang-Tang. Xiao@mediatek.com, Osmond.Yao@mediatek.com

Yung Cheng Chen, Harish Peta
Cadence Design Systems, 2655 Seely Ave, San Jose, CA 95134, USA
vicchen@cadence.com, hpeta@cadence.com

Abstract- This paper proposes a comprehensive verification approach for cache coherent systems, addressing
the challenges of meaningful stimulus, system coherent checkers, and performance analysis tools. The approach
combines Perspec, CPU, CHI VIP, and system verification scoreboard to ensure correct cache coherent protocol
operation and identify performance issues. The hybrid verification environment enables functional verification
and performance analysis, leveraging inheritable sequences to reuse test stimuli across projects. The approach
captures cache coherency and system performance bugs, identifying corner RTL issues that cause system hangs
and performance bottlenecks, leading to improved system reliability and performance.

I. INTRODUCTION
Cache coherent systems are increasingly complex and critical components of modern computing
architectures, but their verification remains a significant challenge. The lack of meaningful stimulus,
system coherent checkers, and system performance analysis tools hinders the verification of these systems,
leading to potential errors and system failures. This paper proposes a comprehensive verification approach
that addresses these challenges by combining the strengths of Perspec[1], CPU, CHI VIP[2], System
verification scoreboard[3], and System Performance Analyzer[4].

Our approach consists of two main components: cache coherent system verification and system
performance verification. In the cache coherent system verification component, This hybrid verification
environment is employed in both cache coherent system verification and system performance verification,
integrating Perspec, CPU, and CHI VIP to generate stress coherent stimulus, ensuring the correct operation
of the cache coherent protocol. The above test scenarios are generated by the Perspec built-in cache
coherency library. Furthermore, protocol functional coverage is utilized to ensure the strength of the
verification. The hybrid verification environment enables the completion of functional verification,
followed by system performance analysis using stress bandwidth stimulus. Additionally, there is another
test scenario about system performance where the test sequence is based on the UVM sequences. The
inheritable UVM sequence feature of CHI VIP is leveraged to reuse test stimuli across different projects,
enabling performance analysis and identification of performance issues specific to the current project.

The proposed approach enables the capture of cache coherency and system performance bugs that may not
be detected by traditional verification methods. Our methodology demonstrates the effectiveness of this
approach in identifying corner RTL issues (incorrect system cache line status) that cause system bus fabric
hang and contribute to performance bottlenecks due to incorrect u-architecture design, leading to improved
system reliability and performance.
II. METHODOLOGY

The following steps describe the verification and implementation methods:

1. Hybrid verification overview
Stress cache coherent stimulus for function and performance
System verification scoreboard connected with DUT
System performance analysis
Functional coverage development

R

Step-1: Hybrid verification overview

The hybrid verification environment is introduced, comprising a DUT that consists of multiple
CPUs with level 1 and level 2 caches, interconnected through an ARM DynamlIQ Shared Unit
(DSU) with a level 3 cache. The primary communication protocol between the DUT and the
System-on-Chip (SoC) is based on the AMBA CHI (Coherent Hub Interface). The Coherent Mesh
Network, a 4x4 mesh-based bus fabric, can be connected to the Cluster using AMBA CHI, and
these designs constitute the DUT. The CHI VIP is utilized to interface with 8 interfaces of the
Coherent Mesh Network, with the primary objective of generating stress cache coherent operations
to verify the cache coherency functionality of the Coherent Mesh Network and Cluster.

In the stimulus section, the Perspec-built cache coherent library is employed to generate embedded
C tests and host C tests scenarios, enabling the Coherent Mesh Network to produce corresponding
snoop operations in response to requests and perform cache coherent test scenarios. The CHI VIP's
built-in protocol coverage is allowed for further review of the verification strength. Additionally,
the custom CHI UVM sequence is tested for system performance. More details will be introduced in
the Step-2 section.

The checker section utilizes the System Verification Scoreboard to ensure the correctness of the
SoC and Cluster CHI bus functions and cache coherent functionality, providing a comprehensive
checker. In subsequent sections, it will be discussed how this checker was used to capture an
incorrect cache line status in the corner RTL issue. In addition to functional verification, system
performance is also a crucial indicator of product competitiveness. The system performance
analyzer is introduced to measure system bandwidth and latency across different scenarios, thereby
determining whether performance issues arise.

DUT
@ CHIRN-F Active MSTVIP O AXI3 Active SLV VIP
- Cluster O CHI RN-F Passive MST VIP :: APB Active MST VIP
; hybrid_arm.c
% Core Core
- L1$ | |- 113 -
B 123 12$ g
| System Performance =
Analyzer
%
= 13%
T N CHI RN-F
— MTK CHI Bridge MST VIP
[CHIBUSIF]
System Performance =
Analyzer I
g 8
APBSLV VIP [Coherent Mesh Netwark 23
System Level Cache o8
ACE-LITE ACE-LITE
I 17-CH ACE ;\
O O
ACE SLV VIP ACE SLV VIP
UvM TB l
| Bus SLV Agent | Bus MST Agent | | Function agents | | Ps_cdn_chi_vip (DPI) |4—
| Decoder VAL2 CALLSEQ | Virtual SEQ lib | | CHI Bus MST Agent |
7'y
: t t
Memory Hex file D CALL_SEQs | | Perspec_chi_test.c |
1
foohomohohoooooooooo oo o b ocoooocoocooooooooooo *

Stimulus Generator

Hybrid Coherence PSS | cdn_coherency sln (cvip) |

Figure 1: Hybrid Verification Environment Overview.

Step-2: Stress cache coherent stimulus for function and performance

This section presents two stimulus methods, which are the Perspec built-in cache coherent library and the
CHI VIP UVM sequence, respectively. Primarily, the cache coherent library includes nine kinds of
coherent scenarios, including basic memory access, exclusive, false sharing, true sharing, cache state
transition, basic coherency, false-true sharing, atomic, and stress cache operations. Perspec generated
embedded C tests and host C tests are executed to activate system cache coherent test scenarios and
meaningful snoop transaction of Coherent Mesh Network then access the Core/DSU/Coherent Mesh
Network system-level cache, thereby achieving system coherent verification. First, the user needs to
determine the number of cores and CHI VIPs to be used based on the system configuration, as shown in
Figure 2. It is also necessary to pre-register the memory space to allow Perspec to generate cache line
addresses within the correct range. The second step involves using the Perspec built-in library to generate C
tests for both the CPU and CHI VIP. Finally, the C tests are run on the system to execute the coherent
system simulation.

The verification environment comprising multiple CPUs and a CHI VIP within the same memory space
shareable is illustrated in Figure 3. Furthermore, The Perspec built-in cache coherency library provides a
diverse range of solutions that users can directly inherit and utilize. This ensures that both core and CHI
VIP can allocate the same cache line and execute multiple read/write operations. Subsequently, self-
checking is performed in the cache region to guarantee data consistency.

The completeness of cache coherent function verification is crucial, and the bandwidth of the DUT is a key
performance indicator. It has been observed that comparing bandwidth of all cache hit scenarios across
different projects and bandwidth results can reveal bandwidth drops of DUT due to micro-architecture
issues under the same test scenario conditions.

This performance test scenario method will be introduced in the following section. First, a CHI UVM
sequence is developed for the level 3 cache read-hit scenario and executed by CHI VIP. Then, the
transaction traffic is recorded as the input for the system performance analyzer. Once the testbench is set up,
it allows us to take different DUTs to trigger the same CHI traffic and observe the performance raw data
from different projects using the System Performance Analyzer (SPA) post-processing, as shown in Figure
4. The CHI UVM sequence is developed based on an understanding of the CHI protocol and cluster level-3
cache. Moreover, this sequence can be easily inherited and reused across different project testbenches. The
sequence begins with the VIP sending a MakeUnique command to set the cache line to a unique cache line
state. Then, the cache data is pre-filled using the WriteBackFull command. Subsequently, coherent read
commands are sent to ensure that the cache lines are read and hit, with no external memory access observed.
Furthermore, the outstanding number of the CHI VIP is controlled using plusargs in SystemVerilog to
create different bandwidth scenarios, as shown in Figure 5. The CHI VIP records transaction information at
runtime, including command, data, and round-trip latency. After the simulation completes, users can obtain
a complete transaction trace log file. This log file is then provided to the system performance analyzer for
post-processing and analysis. In Step-5, the system performance analyzer is used to analyze the bandwidth
of these test scenarios, and a performance drop is identified after bandwidth data comparison.

Step2: Test generation Step3: Program Execution

Embedded C tests Host C tests
C Test C Test C Test

Libraries Perspec“"

1

\ CcPU =
vewe | [weme
e |
Coherent Cluster L3 Cache |

Brid’ge Brid:ge

’ Step1: System Configuration | | | | | | | | |
table: processor_info
@package: sml_pkg, @size const: NUM_OF CORES, @struct: sml_processor_info s CHI Interfaces |
#tag, #kind, #cluster, #core_id,#cluster_id,#coherency level,
cpu® core@, v9 CPU, cpud, e, e, FULL,
cpud_corel, vo CPU, cpus, 1, o, FULL, CMN
cpu@_core2, v9 CPU, cpud, 2, e, FULL,
cpu@ core3, v9 CPU, cpud, ay e, FULL,
cpud core4, w9 CPU, cpud, 4, e, FULL, | AX| Interfaces
cpud core5, v9 CPU, cpud, i o, FULL,
IRNF72 CHI E, CHI, ¢l RNF72 CHI E, 10, 1, FULL, l | | l | | | | | | | |
RNF76_CHI_E, CHI, cl_RNF76_CHI E, 11, 2, FULL,
RNF8@ CHI E, CHI, cL_RNF88 _CHI E, 12, 3, FULL,
RNF84 CHI E, CHI, ¢l RNF84 CHI E, 13, 4, FULL,
RNF104_CHI_E,CHI, cl_RNF184 _CHI E,14, Sy FULL,
RNF166 CHI E,CHI, ¢l RNF186 CHI E,15, 6, FULL,
RNF112 CHI E,CHI, ¢l RNF112 CHI E,16, 7, FULL,
RNF114_CHI_E,CHI, cl_RNF114_CHI_E,17, 8, FULL,

table: memory info
(@package: sml_pkg, @size const: NUM OF MEM BLOCKS, @struct: sml_memory info s
#mem_block,#enabled,#base addr, #end addr , #cacheable,#exclusive able,#alignment,

EMI . TRUE ,8xDBBBBABE, BXDFFFFFFF, TRUE .FALSE .64 |
L35 A+ TRUE ,0x00400000, ©x0047FFFF, FALSE +FALSE .64 1
IDEVICE » TRUE ,0x50000000, OxSfffffff, FALSE »FALSE .64 '

Figure 2: Cache coherent stimulus generation flow.

'table: processor info 1
l@package: sml_pkg, @size_const: NUM OF CORES, @struct: sml_processor_info_s o select_cache_vegion [58]
#tag, #kind, #cluster, #core_id,#cluster_id,#coherency level, 1
cpud_cored, v9 CPU, cpué, 0, 0, FULL,
cpu®_corel, w9 CPU, cpuo, 1, o, FULL, -
Core cpue_core2, v9 CPU, cpu@, 2, 0, FULL, W
cpué_core3, v9 CPU, cpue, <, 0, FULL, v N
cpud_core4, v9 CPU, cpud, 4, 0, FULL, ~
cpud core5, v9 CPU, cpud, 5, 0, FULL, (cache_region.t S
RNF72_CHI_E, CHI, cl_RNF72_CHI_E, 10, i, FULL, “mem_segl.addr __0xd5374a40 |
IRNF76_CHI E, CHI, cl_RNF76 CHI E, 11, 2l FULL, ~mem_seg! block_tag EMI .
IRNF86_CHI E, CHI, Cl_RNF86 CHI E, 12, 3, FULL, Amem seg2addr Oxefdae78546084720 N
IRNF84 CHI E, CHI, cl_RNF84 CHI E, 13, 4, FULL, “mem_seg2.block_tag ~
Coreless =3 |pnF104 CHI E,CHI, cl_RNF104 CHI E,14, 5% FULL, s
RNF106 CHI E,CHI, CURNF106 CHI E, 15, 6, FULL, nhegp e
IRNF112_CHI_E,CHI, cl_RNF112 CHI E, 16, 7, FULL, 3 .
RNF114 CHI E, CHI, CURNF114_CHI E,17, s FULL. @ allocate_to_cache [71] @ allocate_to_cache [74]
coretag cpud_cored coretag RNF72_CHIE
table: memory info 4 -
|épackage: sml_pkg, @size const: NUM OF MEM BLOCKS, @struct: sml memory info s N ==
#mem_block,#enabled,#base addr, #end addr , #cacheable,#exclusive able,#alignment, in_regicn " en
EMI ,TRUE ,0xD00EOROO, OXDFFFFFFF, TRUE ,FALSE 64 1 1
L3s L TRUE ,0x00400000, OX0Q47FFFF, FALSE ,FALSE ,64] N
IDEVICE »TRUE ,0x50000000, OxSTFfffff, FALSE ,FALSE 164 ' .arw
/ S~
in_region in_région
12 "N
@ multLrw_cache [65] ¢ multrw_cache [s8]
coretag cpu0_cored core.tag RNF72_CHI_E
7 -
’ »
PREN

o check_region: check_cache_region [59] o check_reglon: check_cache_region [62]
coretag <pun_cored coretag RNF72_CHI_E

Figure 3: Determining the number of Cores and CHI VIPs through system SPEC. Cores and VIP are
accessing the same address simultaneously.

DUT

@ CHIRN-F Active MST VIP O AXI3 Active SLV VIP
Cluster O CHI RN-F Passive MST VIP :: APB Active MST VIP

CHI UVM Seq

41sng IXv

3] 21njea]

Step1: Create Max. BW scenario stem Performat

Analyzer [
H
= L3$
g
=
— MTK CHI Brid
Step2: Dump transaction log for SPA/ —

System Performance -
Analyzer N
APBSLV VIP | Coherent. Mesh Network
System Levet €ache

ACE-LITE

ACETE

17-CH ACE o .
ACE SLV VIP--| __

O
ACE SLV VIP

Post-processing

Previous project

Current project 5
erformance raw |:> erforma'r’me] raw |:> Compare two project
p P raw data

data (BW/Latency data (BW/Latency

Step3: Run the same test sequence in the current project Step4: Compare the raw data to see if there is performance
issue

Figure 4: Read cache-hit sequence for performance test scenario.

‘define DSU L3 Read Hit Transaction (opcode, addr) \
‘uvm do on with(request, p sequencer.pAgent.sequencer, { \
request.ReqOpCode == '‘opcode’ ; \
request.MemAttr == 'hd; \
request.RSVDC[INNER ALLOC] == 1; \
request.Addr == "addr®"; A

HE

class performance seq scenario extends base seq scenario ;
‘uvm object utils(performance seq scenario)

function new(string name="performance seq scenario”);
super.new(name) ;
endfunction

virtual task body();
int chi ostd;
super.body();

if($valuesplusargs(“chi ostd=%d", chi ostd))
p_sequencer.pAgent.cfg.MaxOutStandingTransactions = chi ostd;
p_sequencer.pAgent.reconfigure();

for (int i=8; i<tr length; i++) begin
‘DSU L3 Read Hit Transaction(DEMALI CHI REQOPCODE MakeUnigue , "BASED ADDR + i*'h4@)
"DSU_L3 Read Hit Transaction(DENALI CHI REQOPCODE WriteBackFull , "BASED ADDR + i*'h4@)
end

for (int i=@; i<tr length; i++) begin
"DSU_L3 Read Hit Transaction(DENALI CHI REQOPCODE ReadNotSharedDirty, “BASED ADDR + i*'h4@)
end
endtask
endclass

Figure 5: Read cache-hit CHI sequence.

Step-3: System Verification Scoreboard connected with DUT

In cache coherent system verification, the CHI VIP's built-in protocol checker and system
verification scoreboard are utilized to ensure bus functionality and cache coherent protocol
correctness. This section focuses on the application of the system verification scoreboard.

It is necessary to identify the master agents and slave agents in the system and define the memory
regions that master agents can access based on the system memory map. Then, it is required to
determine whether each agent belongs to a cache coherent node. The system verification scoreboard
features an internal pseudo snoop filter that checks for transactions with the violation of cache
protocol. Finally, it is necessary to define each connection between slave agents and master and
ensure no bus decode issues in the system.

Through the system verification scoreboard, we have observed that IP assumption mismatches can
lead to unexpected cache line status was updated by DUT, resulting in system hangs.

virtual function woid definePorts();
inst.definePort("input@", DENALI SVD SIDE INPUT, DENALI SVD PROTOCOL CHI,DEMALI SVD INTERFACETYPE COHERENT);
inst.definePort("inputl", DENALI_SVD_SIDE INPUT, DEMALI_SVD_PROTOCOL_CHI,DENALI_SVD_INTERFACETYPE_COHERENT) ;
Tl
inst.definePort("output®”, DENALI SVD SIDE_OUTPUT, DENALI SVD_PROTOCOL AXI,DENALI SVD_INTERFACETYPE_BASIC);
inst.definePort("outputl”, DENALI_SVD_SIDE_OUTPUT, DENALI_SVD PROTOCOL_AXI,DENALI SVD_ INTERFACETYPE_BASIC);
inst.definePort("output2", DENALI SVD SIDE OUTPUT, DENALI SVD PROTOCOL AXI,DENALI SVD INTERFACETYPE BASIC);
inst.definePort("output3", DENALI SVD SIDE_OUTPUT, DENALI_SVD_PROTOCOL_AXI,DENALI_SVD_INTERFACETYPE_BASIC);
endfunction // definePorts

virtual function void mapMemorySegments();
inst.mapMemorySegmentToMultipleSlaves("inpute" ,48'hoeee_8eee_8eee,48'heff ffff ffff, {"outpute”, "outputl", "output2", "output3"});
inst.mapMemorySegmentToMultipleSlaves("inputl®,48'hoeee 8eee 8eee,48'heff ffff ffff, {"outpute”, "outputl", "output2", "output3"});

inst.setInnerDomain("Inner”, {"input@","inputl"});
endfunction // mapMemorySegments

Figure 6: Example of system master and slave defined in system verification scoreboard for cache
coherent protocol checks.

Step-4: System Performance Analysis

The previous verification methods are effective in detecting functional design issues. However,
performance issues are not able to be identified during the early RTL development stage. Therefore,
this section describes how the system performance analyzer is introduced to facilitate system
verification.

The system performance analyzer can analyze the bandwidth and latency of the VIP node during a
single simulation process and utilizing CHI-VIP to dump the simulation trace file as an input for the
analyzer, as shown in Figure 7. This analysis result applies the maximum latency to be an outlier
index with the corresponding transaction attribute (e.g., address/command type/length) within the
current test regression. From Figure 7, the summary provides an analysis of six CHI masters,
detailing the total number of transactions issued throughout the entire simulation, along with the
corresponding minimum, maximum, and average latency, average bandwidth, and outstanding
transactions. Additionally, the trend of average bandwidth over the entire simulation time is
illustrated. This graphical representation aids in identifying latency outliers and assists in the design
process, as shown in Figure 8. The design team can apply this result to determine whether the
latency behavior meets expectations then quickly locate the issue point. On the other hand, the
inherited test sequence is utilized to perform bandwidth testing on the system. The current project's
bandwidth raw data of the CHI VIP binding location is compared with previous cases to determine
whether performance issues occurred. A comparative analysis of the design between the previous
project and the current one reveals that the successful utilization of a performance analyzer enabled
the identification of performance degradation stemming from u-architecture issues.

Summary Table
Bandwidth Calculation Window (js): 2008 248264 - 2047330104
p . Numof 3 . MaxLatency . Avglatency . MinLatency . MaxBandwidth .
ntxtace Namme i} Prvtocol ¥ transactions i Brtes % (Round Trip).ns ¥ (Round Trip), ns ¥ (Round Trip).ns ¥ wmers b
CHI_RN_MST_CORE.S CHI 1651 105664 13900 mie 800 4554
CHILRN_MST_CORE 4 CHI 167 107136 14050 500 01766

CHI_RN_MST_CORE 3 CHI 1571 100584 15800 204056 1000 3740716
CHI_RN_MST_CORE2 CHI 1543 8752 14250 205,669 1000 4060.189
CHI_RN_MST_CORE_1 ~ CHI 159, 102184 13050 264034 800 371981

CHI_RN_MST_COREO CHI 1501 101824 14600 206,445 200 3799812

Figure 7: Summary of CHI node bandwidth and average latency by a single pattern.

Over Time Ll

L, a@<>o«w(0o 2047 m v] (iz view @) (I spitey @) (¥ editfiter) o | &

Bandwidth Over Time (Display Bandwidth)

Time [ys] - Samp

— CHIRN_MST_CORE0 — CHIRN_MST_CORE_1 — CHI RN MST_CORE 2 — CHI RN_MST_CORE 3 — CHIRN_MST_CORE 4 — CHI RN_MST_CORE S

Latency Over Time (Round Trip) TAVX

2030 2032 2034 2036 2038 2040 2022 2044 2046

2010 2012 2014 2016 2018 2020 2022 2024 2026

[ps) - Sampling
— CHIRNMST.CORE 0 — CHIRN_MST_CORE_1 — CHI RN MST.CORE2 — CHIRN_MST_CORE3 — CHIRN_MST_CORE 4 — CHI RN_MST_CORE S

Figure 8: Trend graphs of CHI VIP bandwidth and latency under single pattern conditions.

Step-5: Functional coverage development

In cache coherent system verification, there are two essential and fundamental functional coverages
that can be used to measure the quality of verification. Firstly, the protocol coverage built into the
CHI VIP can effectively confirm that protocol attributes of each CHI mode are fully verified. The
Hybrid verification environment proposed in this paper, combined with user-defined test sequences
and achieved 83% single coverpoints and 90% cross coverpoints of the CHI interface protocol,
comprising 1460 CHI VIP cover points and 5380 cross-cover points.

The second important indicator is that the scenario coverage of Perspec can be used to measure
whether the defined cache coherent scenarios have been correctly generated in embedded C tests
and host C tests. As shown in Figure 9, the scenario coverage for false sharing and true sharing has
been covered. A functional coverage review can effectively demonstrate the quality of design
verification and facilitate discussions on the reasons for uncovered cover bins, determining whether
they need to be covered.

EXPEGTED |UNCOVERED |COVERED |PERCENT Variables for Group Instance
Variables 1468 235 1233 83.99 uvm_test_top.infratba_testenv.CHI_RN_SLV_CMNO.monito: ' 8 gn: :“it ﬁaf:is‘i,\?eMl\leV\yl’P
Crosses 5380 536 4844 90.04 [ARIASLE: ERCID oD o @ AXI3 Active SIVVIP
Source File(s) QoS 16 0 1 \ 7 APB Active MST VIP
i adence/11.30.094-20231220fo0l i hiCoverage. svh "
ReqOpCede 70 0 7 . puT
12 Instances: WriteDataOpCode 6 1 . Cluster
e [seoRs ‘”"‘“"‘“‘L::.sr;:m e g:;::o,;cme ¢ ﬁ g
uvm_tes!_top.infratba_test.env.CHI_RN_MST_MPO.monitorcoverModel.ltemEndedCover 8573 1 100 1 64 64 Siz8 7 [) ore “ore
uvm_tes_top.infratba_testenv.CHI_RN_MST_MPLmonitor. over 8699 1100 1 64 64 1adop 4 9 n
uvm_tes_top.infratba_test.env.CHI_RN_MST_MP2.monitor over 8651 1100 1 64 64 NonSecure 2 0 '. g
uvm_test_top.infratba_testenv.CHI_RN_MST_MP3.monitor. EndedCover 8662 1100 1 64 64 Lonsecueta z : 5
uvm_test_top.infratba_testenv.CHI_RN_SLV_CMNO.monitor. over 79.81 1 100 1 64 64 StashLPIDValid 2 0 i
um_tesi_top.infraiba_testenv.CHI_RN_SLV_CMNLmonilor. over7534 1100 1 64 64 poo 2 o 22
uvm_test_top.infratba_testenv.CHI_RN_SLV_CMN2.monitor. over 80.33 1 100 1 64 64 Deep 2 0 13%
uvm_test_top.infratba_testenv.CHI_RN_SLV_CMN3.monitor. over 79.99 1 100 1 64 64 LikelyShared 2 0
uvm_test_top.infratba_test env.CHI_RN_SLV_CMN4.monitor coverModel.temEndedCover 8230 1100 1 64 64 ouer 3 o T -
wvm_test_top.infratba_test.env.CHI_RN_SLV_CMNS.monitor.coverh over7462 1100 1 64 64 memaAm 5 0 | MTK CHI Bridge
uvm_test_top.infratba_testenv.CHI_RN_SLV_CMNB.monitor. over 81.15 1/ 100 1 64 64 sppAtir 2] 0 B~]
uvm_test_top.infratba_test.env.CHI_RN_SLV_CMN7.monitor.coverModel.ltemEndedCover 77.13 1100 1 64 64 DvmDomain 2 0 easaseesssssssasnsnsnss 3
@
» 4F sml_pkg T 59.26% 39/253(15.42%) - ‘O CHI RN-F Passive MST VIP
» £ cdn_coherency_ops_c) 63.14% 72187 (82.76%) . O AXI3 Active SLV VIP
» 1 exclusive_lock) 96.3% 32/33(96.97%) *. i APB Active MST VIP
» i parallel_exclusive T 50.19% 23/40(57.5%)
» 4k false_sharing_random_operator_cov T 64.34% 153/ 606 (25.25%) Cluster
» 4F false_sharing_random_operator) 96.47% 210/ 228 (92.11%) z
» 4 cdn_false_sharing_pair_actions_cov 100% 16/16 (100%) =,
b 4 cdn_true_sharing pair actions_cov 100% 2/2(100%) & i
» 3F cdn_pslib_stress_cov) 55.56% 7/15(46.67%) L1 pal
» F true_sharing_operator) 82.99% 2107251 (83.67%) %
» 1F cdn_coherency_base_cov [88.68% 1517189 (79.89%) DSU El
» 1 invalidate_cache] 58.33% 24/34(70.59%) z
» F invalidate_icache) 83.33% 20/21(95.24%) ? L35
» & change_cline_state T 66.2% 39/55(70.91%) e
MTK CHI Bridge

L Commse ~ 1 |

Figure 9: CHI VIP protocol and cache coherent test scenario coverage.

III. CASE STUDY

This section presents two case studies. The case A involves an RTL issue captured by the system
verification scoreboard. The case B involves a performance drop observed through the system performance
analyzer's bandwidth raw data via cross-project comparison.
A. Capture of Incorrect Cacheline Status by System Verification Scoreboard

The current Hybrid verification environment, where the CHI VIP sends a ReadOnce command, is
illustrated in Figure 10. It is expected that the Coherent Mesh Network will subsequently send a SnpOnce
command to the Cluster based on the cache line. However, the Coherent Mesh Network sends SnpOnce
commands to each CHI coherent node in certain application and each CHI node in the Cluster receives a
SnpOnce command. The first core completes SnpOnce and sends the cache line with Unique Clean state to
Coherent Mesh Network. When the 2" core completes SnpOnce, it still sends the cache line with Unique
Clean state hence violating the cache protocol. According to the cache protocol, only one cache coherent
node can send the cache line with Unique Clean State to the Coherent Mesh Network, while other coherent
nodes must update the cache line with invalid state. This issue can be captured by the system verification
scoreboard using its built-in checker, as shown in Figure 11.

DUT

@ CHIRN-F Active MSTVIP O AXI3 Active SLV VIP
- Cluster O CHIRN-F Passive MST VIP :: APB Active MST VIP
£ hybrid_arm.c
g Core Core
- L1s | e L1$
N
L2$ 128 £
E
] DSU
£
@ L3$
E
— MTK CHI Bridge
T
= ‘ N @
) i v ko
SnpOnce J L, SnpOnce ReadOnce £ 8
5
ucstate ucstate Coherent mesh network i
(Unexpected) System Level Cache 2 &
ACE-LITE ACE-LITE

17-CH ACE

O O
ACE SLV VIP ACE SLV VIP

Figure 10: Capture of unexpected cache line status by system verification scoreboard leading to
system hang.

“Oenali® [457686580 ps| uvm_test_top.env.sviAgent : SWD_TRACKER: GATA -[] Gata-g43532 Fort:ingute Direction:SHOOF OpCade:5npince Address:6x50880008 Data:H100DOBOBDUCOBRIC0ABIB0AODE0A000PAODAPODDICORNICOADIBOAEE0N
09p0ed control-@45403

*Denali® [457606560 ps| uve test top.env.svdAgent : SVD TRACKER: RESP -»[] resp-@45533 Port: inputs Direction:SNOOP OpCode:SnpOnce Data:1 Sffared:@ Dirty:8 Err:® Unigue:l control-@45463

“Denall® [457633020 p3] Ve Test 1op,€nv,SWBAGENT : SVD TRACKER: RESP ->[] resp 245635 Port: inputl Direction:SHOOP OpLoce:SnpDnce Data:l Sharcd:0 DLrty:0 Erri@ Unigue:l control-g4s410

UM ERROR /mtklib/soft/verif/Cadences/11.30.094-20240111/tools , Lnx@b/denali 84bit/ddvapi/sv/uva/svd/cdnSvdUvaMonitor, sv(682) @ 457633 ns: uva test top.env,svdAgent.monitor [DENALI SVD ERR 160 UNEXPECTED RESPONSE FOR EXTRA SNOOP] Detect

edluva_test_top.env.svdAgent] ERR 160 UNEXPECTED RESPONSE FOR EXTRA SNOOP: The snoop contral-@45418 (seen on port inputl, on address Bx38608086) got a respanse (resp-G45635) with has_data=l is shared=d which is not expected for Redun
[dant/Extra snoops

Figure 11: Checker details for capturing unexpected cache line status.

B. Capture of Bandwidth Drop due to u-Architecture Issue Observed by System Performance Analyzer

In each project, verifying the bandwidth and latency of a new cache coherent system is a crucial
task of design verification. By comparing the bandwidth raw data obtained from the same CHI
UVM sequence in previous projects with the one in current project, performance differences can be
easily identified, as shown in Figure 12. In this case, the CHI bus topology change of the cache
coherent system contributes to maximum bandwidth was congested with more transactions in
performance degradation, as shown in Figure 13. Therefore, DV can challenge the architecture team
to improve this issue via the experimental data.

Cluster @ 200MHZ

600
A
A A
500
A
7 Ads
2 :‘ current_project
ﬁ A . A previous_project
3 300
A
A Ak
200 A A
Y Y

A A
Ao ariaTma A e A AA AA A

0 5000 10000 15000 20000 25000
BW (MBIS) -15% bandwidth drop compare to the previous project

Figure 12: Identification of bandwidth performance drop in the current project using a performance
analysis tool.

® CHIRN-F Active MST VIP ® CHI RN-F Active MST VIP

e 1 e re
= N ———
‘ -« \ . @ le **"v\‘ o e

| |
SRAM Passive viP Ba ndwidt" drop due to S”Ce SRAM Passive
location change
L3D$ 5

i s S T

Cluster topology in previous project Cluster topology in current project

Figure 13: Capture of performance drop issue due to CHI bus topology change.

IV. CONCLUSION
This paper primarily describes how to verify coherency between cores and CHI-VIP by utilizing
Perspec. Then, users can perform functional and performance verification based on this platform.
The main contributions are:

e Developing 9 scenario groups of cache coherency, consisting of 134 tests for coherent
function and performance stress scenarios.

e Introducing system verification scoreboard and performance analyzer to increase the
diversity and strength of verification.

e Identifying corner RTL issues related to incorrect system cache line state that causes
system bus fabric hang.

e Finding performance bottlenecks due to incorrect u-architecture design

REFERENCES
[1] Portable Test and Stimulus Standard Version 3.0
https://www.accellera.org/downloads/standards/portable-stimulus

[2] CHI VIP:
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/verification-ip/simulation-
vip/amba/amba-chi.html

[3] System Verification Scoreboard:

https://www.cadence.com/en_US/home/resources/technical-briefs/system-vip-tb.html#verification-
scoreboard

4] System Performance Analyzer:)))
ttps://www.cadence.com/en_US/home/resources/technical-briefs/system-vip-tb.html#performance-
analyzer

