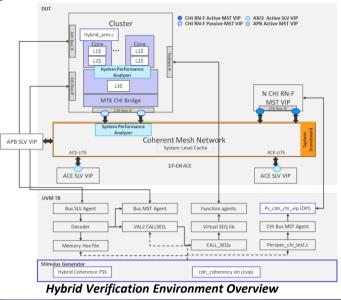


A Hybrid Verification Approach for Cache Coherent Systems: Functionality and Performance

Jiang-Tang Xiao¹, Yung Cheng Chen², Harish Peta², Osmond Yao¹

¹ MediaTek Inc. ² Cadence Design Systems


VERIFICATION GOAL

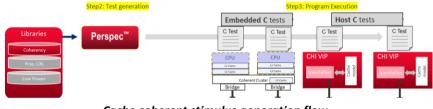
Cache coherent systems are critical but challenging to verify:

- Lack of meaningful stimulus to test the cache protocol
- Need for a system coherent checker to guard functionality
- Need for a systematic methodology to evaluate system performance

Proposes a comprehensive verification approach:

- Perspec-built cache coherent library generates C tests for snoop operations
 APB SLV VI
- CHI VIP's protocol coverage reviewed for verification strength
- Custom CHI UVM sequence tested for system performance
- System Verification Scoreboard ensures cache coherency correctness
- System Performance Analyzer measures bandwidth and latency

PROPOSED METHODOLOGY (1)


Proposed Verification Flow

architecture design.

1. Stress cache coherent stimulus generation for function - Supports 9 scenario groups of cache coherency

- 2. System verification scoreboard connected to guard cache protocol
- 3. System performance analysis to evaluate if there is a performance drop

4. CHI functional coverage development to ensure the quality of test regression

Cache coherent stimulus generation flow

RESULT

-15% bandwidth drop compare to the pr

Identifying corner RTL issues related to incorrect system

•Finding a 15% performance drop due to incorrect micro-

Identification of bandwidth performance drop

cache line state that cause system bus fabric hang.

PROPOSED METHODOLOGY (2)

Performance Verification Flow

- 1. Developed for the CHI VIP L3 cache read-hit sequence
- 2. Recorded as input for the System Performance Analyzer
- 3. Analyzes bandwidth of test scenarios between the projects

Trend graphs of CHI VIP bandwidth

CONCLUSION

1. Describe how the hybrid environment verifies the cache coherency system between cores and CHI-VIP by utilizing Perspec.

2. Introduce the system performance analyzer to obtain the performance raw data for comparison.

3. Collect functional coverage to prove the quality of verification.

CATEGORY	EXPECTED	UNCOVERED	COVERED	PERCENT								Variables for Group Instar	ice		
Variables	1468	235	1233	83.99								uvm_test_top.infratba_tes	Lenv.CHI_RN_S	SLV_CMNO	I.monite
Crosses	5380	536	4844	90.04								VARIABLE	EXPECTED	UNCOVERED	COVERS
Source File(s) : /mtklib/soft/verifiCadence/11.30.094-20231220/tools.lnx86/denali_64bit/ddvapi/sv/coverage								Cour				QoS	16		5
								IC ON	rage.	svn		RegOpCode	70		b
12 Instances:												WriteDataOpCode	(1
NAME						SCORE		T GOAL	AT DI	AUTO	PRINT	CompDataOpCode	2		Ó
NAME							WEIGHT			MAX		CompOpCode	4		2
uvm test top.infratba test.env.CHI RN MST MP0.monitor.coverModel.ltemEndedCover							1	100	1	64	64	Size			D.
uvm test top	o.infratba tes	stenv.CHI RN	MST MP1	monitor.cove	Model.ltemEndedCover	86.99	1	100	1	64	64	TagOp	4		ð
uvm test top	.infratba tes	Lenv.CHI RN	MST MP2.	monitor.cove	rModel.ltemEndedCover	86.51	1	100	1	64	64	NonSecure	1		ð.
					Model.ltemEndedCover			100	1	64	64	NonSecureExt	2		1
					erModel.ltemEndedCover			100	1	64	64	StashNIDValid	1		0
					erModel.ItemEndedCover			100	1	64	64	StashLPIDValid)
					erModel.ltemEndedCover			100	1	64	64	Endian	1		5
					erModel.ltemEndedCover			100	1	64	64	Deep			2
					erModel.ltemEndedCover			100	1	64	64	LikelyShared		<u> </u>	
					erModel.ltemEndedCover			100	1	64	64	Order			
					erModel.ltemEndedCover			100	- 1	64		MemAttr SnpAttr			
									- 1						
uvm_test_top	o.infratba_tes	stenv.CHI_RN	SLV_CMN	7.monitor.cov	erModel.ltemEndedCover	77.13	1	100	1	64	64	DymDomain	1		٥.

83% single coverpoints and 90% cross coverpoints of the CHI interface protocol

ΜΕΟΙΛΤΕΚ

ACKNOWLEDGMENTS

current_project
A previous_project

For any further details, please send an email to the following address: Jiang-Tang.Xiao@mediatek.com.

cādence°

© Accellera Systems Initiative