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Abstract- Shift-Left testing is a term used in the software and silicon development cycles to start testing as early as 

possible. For hardware verification, Model Based Design (MBD) enables shift-left testing at a higher level of abstraction 

with significant competitive advantage to achieve productivity, efficiency, and cost reduction. We propose an effective and 

practical shift-left solution at the system level which fares against customer requirements and can then be reused at the 

chip-level Universal Verification Methodology (UVM) environment, resulting in finding and fixing bugs earlier. 

In this paper, we describe the Model Based Verification (MBV) methodology with an example of Model Based testbench 

developed for a Coordinate Rotation Digital Computer (CORDIC) DSP IP design. The intended audience of this paper is 

system engineers, algorithm engineers, design and verification engineers. We have organized this paper into five parts - 

Introduction, Related Work, Proposed Workflow, Example Bench and Conclusion. 

Keywords: Model Based Verification, Simulink, MATLAB, UVM code generation, uvmbuild 

 

I. INTRODUCTION 

Allegro Microsystems develops advanced semiconductor technology for the implementation of application-

specific algorithms that sense, regulate, and drive a variety of mechanical systems. Allegro’s semiconductors provide 

functions such as sensing angular or linear position, driving electric motors or actuators, and regulating the power 

applied to sensing and driving circuits for safe and efficient operation. Automotive Manufacturers are adding new 

sensing and processing capabilities in vehicles. These are sophisticated mixed signal sensors. The requirements from 

customers are becoming more complex and time to market tighter, which is resulting in a more complex algorithm 

with a reduced time to market. The stringent quality requirements in the automotive domain present a significant 

challenge in terms of developing and verifying these designs. Also, these mixed signal sensor chips are being 

developed for multiple customers with some requirement variations. The digital part of the algorithm will need to 

interface with analog blocks as well as external mechanical systems (e.g., Coils) and, in some cases, there are feedback 

loops between digital and analog that adds more complexity. This is resulting in the need to move architecture and 

algorithm development up to a higher abstraction layer, thus helping in better definition and implementation of 

algorithms.  

Many of these sensor chips interact with mechanical systems that themselves need to be modeled and mapped to 

an algorithm model of the chip for better understanding of the overall system. For Verification engineers, 

understanding the application side of the chip and injecting realistic stimulus is becoming much more critical in finding 
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genuine design bugs. Critical verification time and simulator licenses are being wasted debugging unrealistic scenarios 

while verifying purely digital blocks in a mixed signal sensor. The later we find bugs in the project cycle, the longer 

the time and higher the cost and effort needed to implement and verify the fix. All these challenges are pushing the 

Design Verification (DV) community to shift their verification efforts to the model development level.  

In this paper, we describe how to build model-based testbenches and perform early testing when design behavior 

is modeled in MATLAB, Simulink. Our approach highlights reusing the Simulink test environment for UVM bench 

development and extending the generated UVM bench to add more complex constrained randomizations, assertion 

checkers and cover groups. Collecting model-based coverage, dead logic detection, rollover and saturation checks 

helped us in finding corner case bugs in the design. In this way, DV engineers can leverage the benefits of 

exhaustiveness, that UVM typically brings in, and reusing the verification effort put in earlier while developing the 

Model based bench. Moreover, merging coverage – code and functional coverage – from the UVM test runs between 

algorithm blocks and non-algorithm blocks in RTL will be much simpler to deliver during coverage sign off , reducing 

the effort for the coverage closure phase. We also share our experience of building a stimulus model that can generate 

multiple test scenarios and how to replicate stimulus between model-based test runs and RTL test runs. 

 

II. RELATED WORK 

A range of other techniques have been developed to support the development of high-level testbenches to enable 

earlier development of ASIC verification workflows. In 2013, MathWorks introduced automatic generation of 

SystemVerilog DPI-C from Simulink models and added support for SystemVerilog DPI-C generation in 2014 [1]. 

The SystemVerilog DPI component generator produces shared libraries from MATLAB functions or Simulink 

subsystems for specified arguments and data types. It generates a directory structure that includes DPI-C wrappers, 

header files, makefiles, SystemVerilog testbenches, and simulation scripts for several commercial HDL simulators.  

Many subsequent approaches involved automatic generation of UVM environments. In 2012 Mentor Graphics 

introduced UVM Framework (UVMF) to aid design teams adopting the UVM methodology [2]. UVMF is an open-

source package that provides a UVM methodology and code generator for rapid testbench generation [3]. Mentor 

Graphics subsequently updated UVMF to automatically incorporate DPI-C components generated from MATLAB 

and Simulink by this method [4]. Several years later, Mentor Graphics added UVM generation to the Catapult™ HLS 

product through integration with UVMF, with the HLS C models integrated as predictors  [5]. 

In 2019 MathWorks added the ability to generate complete UVM environments from Simulink subsystems for 

various design topologies with subsystems corresponding to UVM sequences, drivers, DUTs, monitors, scoreboards, 

etc. [6].  

In a 2021 DVCon Europe paper, STMicroelectronics engineers using Simulink developed a design and verification 

approach for mixed-signal ASICs that employed automatic UVM generation and RTL generation for the DUT [7]. 

They saved time by avoiding duplication between system-level and RTL-level verification, resulting in design 

efficiency and quality improvements. In a 2022 DVCon US paper [8], Silicon Labs engineers using MATLAB to 

design filter banks improved their ASIC design verification workflow by automatically generating UVM testbench 

components from MATLAB code.  

This paper is based on the use of UVM generation from design specifications developed in MATLAB and Simulink 

as high-level modeling languages. Generation of RTL from Simulink is also discussed in the context of improving the 

overall design and verification workflow. 

 

III. Proposed Workflow 

In a traditional workflow (Fig.1), system architects hand off a specification document to the design-verification 

team, which is then used as a golden reference. In comparison, the MBD verification approach (Fig.2) is a significant 

improvement from a document-based specification approach. A Model acts as an executable specification to improve 

specification hand-off and captures design behavior at a higher level of abstraction. The capability to simulate the 



   

 

   

 

expected design behavior in the form of a model allows better understanding of expected behavior listed in the 

specification. The system architects, designers and verification engineers can then better collaborate using the models. 

 

Figure .1 Traditional Verification Workflow 

   Verification engineers can also leverage these models for accurately capturing algorithm behavior by modeling 

the verification environment using Simulink and MATLAB. Model-Based Verification is an excellent solution for the 

Shift-Left verification in terms of a) mapping Simulink tests to requirements in our requirements definition tool Jama 

for initial verification planning [18], b) being easy to update when requirements change, c) reducing Simulation 

turnaround time, d) offering easier and faster debugging, e) enabling earlier testing, f) supporting design functionality 

more quickly, and g) authoring and managing regression test-suites. Furthermore, we can automatically generate 

standalone UVM components from Simulink that can be integrated into the UVM environment [7, 8].  

 

Figure .2 Model-Based Verification. 

 



   

 

   

 

Model-Based Design starts from capturing requirements and progresses all the way to implementation [9]. As shown 

in Fig 3, Listed below are descriptions of the key stages in model development workflow.  

Requirement Specification - System engineers can initially define requirements and annotate models with these 

requirements. It helps to ensure traceability of requirements throughout the design cycle.  

Architecture Model – System engineers can then build architecture models corresponding to the requirements and 

simulate the model. They can use this model to fine-tune the algorithms without worrying about implementation 

details such as converting to fixed-point design and experiment with frame-based versus sample-based architectures.  

Implementation Model and Testbench – The next step is to convert architecture models into implementation 

models. The conversion is needed because fixed point logic is simpler and use less resources on hardware. Not having 

a floating-point processor to deal with could be another reason. In any case, it is important to select word size and 

fractions bits such that the range of floating-point results and precision is maintained as per the specification. This 

conversion may involve a) converting a floating-point algorithm to a fixed-point representation and b) using a subset 

of Simulink blocks and MATLAB language that support HDL code generation for designs-under-test (DUTs). System 

Engineers can then collaborate with design verification (DV) engineers to perform Model-based Testing (MBT). 

Using MBT, the shift-left of verification happens from RTL level to a Model-based DUT. This is achieved by building 

a Simulink-based testbench and then transitioning into detailed design and verification using models. The models are 

then verified, and model structural coverage is reviewed. At this stage, formal verification for DUT model can be run 

to detect dead logic, integer overflow, array access violations and division by zero. The users can also include any 

legacy RTL IP which has been developed outside model-based workflow into Simulink using HDL co-simulation 

block [10]. For enabling downstream UVM testbench generation, it is essential that the Stimulus, DUT, and Checker 

models use MATLAB code and Simulink blocks that support C code generation.  

 

Figure 3 Model-Based Design and Verification (MBDV) 

HDL and UVM Code generation – The regression results and coverage review are used as status of Verification 

closure at the model level in Simulink. The code generation tools can then be used for HDL code generation from the 

DUT and UVM testbench generation from testbench components of Simulink model. 

RTL Simulation Testbench– The generated block-level UVM bench can then be enhanced by DV engineers and 

integrated into their top level UVM bench. In this step, functional coverage analysis can act as feedback to update 

Stimulus model in Simulink to generate missing scenarios. 



   

 

   

 

 

 

IV. Example: Model-based testbench 

In this section, we discuss how to build a Model-based testbench using a CORDIC design as an example. A CORDIC 

circuit serves to compute several common mathematical functions, such as trigonometric, hyperbolic, logarithmic, 

and exponential functions. The key components of a Model Based testbench are shown in figure 4. The description of 

each of the subsystems is listed below. 

1. Sequence - This subsystem generates stimulus for the DUT. This block consists of MATLAB function code and 

other Simulink library blocks to create and randomize stimulus [11, 12]. The sequence block has input called 

seed, which is used to initialize the MATLAB random number generator [13, 14]. We use a Test Sequence block 

to create different test scenarios and the selection of which scenario to run is done through an input Simulink 

parameter [15]. These scenarios are used to switch between a functional testcase and a randomized testcase. 

Functional testcase is based on the real time data gathered from mechanical setup in the lab which is processed 

using MATLAB script until the input of CORDIC stage. Randomized testcase utilizes the seed input and 

MATLAB function code to generate constrained random stimulus. These scenarios can be run from the same 

Simulink test bench. Simulink Assertions are placed on the fixed-point inputs for range checking. Simulink verify 

calls are used to collect the coverage on the generated input stimulus [17]. 

The Sequence block translates into a uvm_sequence on code generation. This automatic translation is a two-step 

process. The first step is conversion from a Simulink subsystem into a System Verilog DPI-C model that preserves 

the behavior as in Simulink. The System Verilog DPI-C model is then further converted into a uvm_sequence. In 

RTL simulations, the stimulus generation is randomized based on the seed input. If a test fails in RTL simulations, 

then the seed input value in uvm_sequence for the failing simulation can be plugged into seed input of sequence 

to recreate the failing scenario in Model-based testbench and debug the design with a Model-Based Design 

engineer.  

 

Figure 4 CORDIC Testbench Model 



   

 

   

 

2. Driver – This is an optional block and can be used in scenarios where Stimulus is frame-based, generating data 

as a vector. The DUT model for HDL implementation can accept only scalar input (a sample value at a time), the 

driver block can then implement the frame to sample conversion. Also, in cases where stimulus is floating point, 

the driver can be used to do float to fixed point conversion before sending stimulus to DUT which is a fixed point. 

3. DUT– The DUT is an implementation model of CORDIC algorithm. This model has been developed using 

Simulink blocks and MATLAB code that supports HDL code generation [16]. The DUT model is a fixed-point 

model. 

4. Predictor – The predictor block serves the purpose of reference model being in floating point. It is written at 

higher level of abstraction without consideration for HDL code generation. The only requirement is the Simulink 

blocks and MATLAB code used should support code generation to produce SV DPI-C model and UVM 

component. The predictor block receives input from Sequence block and produces reference output used by 

scoreboard for self-checking logic. This model can be implemented as floating point model. In the case of 

CORDIC, the MATLAB code developed here is drawn from the specifications document. 

5. Monitor – This is also an optional block and can be used in scenarios when output from DUT needs to be 

converted into a frame for comparison in Scoreboard. The monitor block is used to convert DUT fixed point 

output to floating point for comparison in scoreboard. 

6. Scoreboard - The scoreboard subsystem acts as a self-checking block which compares the predictor (ideal model) 

outputs against the DUT outputs. The DUT fixed point results when converted to floating point should match the 

predictor model within certain error tolerance. If there is a mismatch above error tolerance, the fixed-point 

arithmetic in DUT might be incorrect or DUT logic has issues. Assertions are modeled in scoreboard using the 

‘Assertion for DPI-C’ block. Cover-groups are modeled using the verify statement in a Test Sequence or 

Assessment block [17]. 

  

 

Figure 5 Assertion checks (left) and functional coverage (right) 

UVM BENCH INTEGRATION 

    The uvmbuild() function from MathWorks generates a SystemVerilog top module which includes complete UVM 
testbench and a behavioral DUT. Each of the subsystems from the model are converted into respective individual 
UVM components such as uvm_sequence, uvm_driver, uvm_scoreboard [13]. The behavioral DUT is replaced with 

the RTL generated from the HDL coder while running the simulations.  

    This generated UVC is integrated into the UVM environment using the following set of steps. 

1. Include the generated files in the compilation list.  

2. Make the required connections between generated uvmbuild and RTL using uvmbuild interface. 

3. Create a new test which reuses the same agent, environment, and sequence. We can further add more 

constraints, assertions, and cover groups to overcome any limitations in generated uvmbuild code. 

4. Inputs will be driven into RTL by triggering the uvmbuild sequences. 

5. Data integrity check will be done in uvmbuild scoreboard, where DUT values are compared against expected 

data from predictor. 

 



   

 

   

 

DISCUSSION OF BUGS CAUGHT 

In the digital signal path of our project, the specification document has equations defined for most of the intermediate 

blocks. Most of the issues we found while using the MBV flow are related to the definition of equations and data type 

inconsistencies which is expected since the specification documentation is still in the initial stages of implementation. 

In the CORDIC block, the bypass and polarity change configurations were added in the later stages of the 

implementation. When these configurations are enabled, the radius safety flag checks were not being exercised which 

was identified through MBV. One of the critical issues we found in this project was that the conditional statements 

were contradictory, and the corresponding logic does not have a valid output for all the input stimulus scenarios. This 

bug is reported to the Systems Team and the specification document is corrected after reviewing the bug. 

LIMITATIONS 

The current limitations, which can be listed as future improvements, are listed below: 

• Constraints on the input stimulus are limited to the minimum and maximum ranges. Other constraints 

available in System Verilog such as solve before, weighted distributions are currently not feasible with this 

flow. 

• The inputs stimulus is streamed into the DUT based on the feedback/acknowledge signal received from the 

DUT. The uvmbuild currently does not support feedback between DUT and Sequence.  

• The self-checking bench would need an acknowledge signal from DUT which can be used to synchronize 

between the predictor output and the DUT output. The predictor computes the output relatively faster than 

the DUT and the checkers are activated based on the acknowledge signal  from DUT. 

• Modeling of very complex concurrent assertions is currently a challenge while using the Model Based 

Verification flow. 

• Model Based Verification flow only supports basic cover groups modeling and options. 

V. CONCLUSION 

 

With projects that involve developing the design in Simulink tool (Model Based Design) and then exporting RTL 

code with fixed point, it made sense for Verification teams to get involved with Model Based Verification early on. 

There was some initial work needed to integrate the generated UVM testbench files into our main chip level UVM 

environment. The main chip level UVM environment can leverage SVRNM models for Analog blocks (VAMS can 

be added with some restrictions) at the front end of Digital blocks resulting in streaming in realistic stimulus into the 

chip and thus verifying the Digital blocks much more efficiently. Modelling at chip-level leveraging SVRNM and 

UVM-AMS could help connect the dots for audience and show the various possibili ties across Digital IP level and 

Chip level. 

Shifting the design verification effort upstream by a verification engineer has resulted in : 

• Verification of the models is more exhaustive early on because verification engineers are best trained to 

find out how to break a system.  

• Generation of better-quality RTL from the models, saving more than two months of verification effort. 

• Reuse of models with their associated Simulink test environments by Verification team for upcoming 

projects is expected to save two or more months. 

• Reuse of models by Systems Engineering to confirm that the implemented design does what requirements 

specify. 

• An opportunity for Allegro’s customers to reuse models within their own environments to confirm their 

requirements are met.  

Model fidelity can be improved as the design progresses, but bugs can be caught  even before the customer has a 

part in hand. Moreover, we expect the bell curve (Fig.6) on bugs reported coming out of the Model-Based approach 

to have a lower height (meaning fewer bugs) resulting in fewer regression runs translating to faster verification time 

and fewer usage of HDL simulator licenses: all contributing to savings on cost of the product. 

 



   

 

   

 

 
Figure 6 Conventional vs Model Based approach. 
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