
Leveraging Model Based Verification for
Automotive SoC Development

Aswini Kumar Tata, Sanjay Chatterjee, Kamel Belhous – Allegro MicroSystems.

Surekha Kollepara - Cyient

Bhanu Singh and Eric Cigan - MathWorks

Agenda

• Introduction

• Problem statement

• Overview - Model-Based Design and Verification
• Traditional verification workflow
• Model-Based Verification

• Simulink testbench model example

• UVM bench integration

• Bugs caught using MBV flow

• Enhancement requests in MBV flow

• Conclusions

Introduction

• Allegro Microsystems develops advanced mixed-signal sensors – primarily
for automotive industry – that interface with mechanical systems that:
o Sense

o Regulate

o Drive

• Customer requirements are becoming more complex with reduced time to
market.

• We perform architecture and algorithm development for DSP blocks at a
higher abstraction layer for better definition and implementation -
Model-Based Design (MBD) with Simulink® from MathWorks.

Problem Statement (for Verification)

• Waiting to find RTL bugs in UVM environment from Model-Based
Design - too late and costly.

• Waste of critical verification time and digital simulator licenses by
debugging unrealistic scenarios with MBD-generated HDL.

• Too late to verify changes in customer requirements AND different
requirements from multiple customers on a chip during project cycle .

• Verification inefficiency if not reusing the Model-Based Verification
(MBV) effort in UVM environment for RTL verification through
complex constrained randomization and functional coverage.

Overview of Model-Based Design and Verification

Requirement Specification
• Define requirements

• Annotate models with requirements (when available)

Architecture Model
• Behavioral model simulated to fine-tune algorithms

Implementation and Testbench Model
• DUT model that supports HDL code generation

• Simulink testbench model for DUT

Simulink Design Verification
• Verifying model against requirements

• Regression run and Simulink model coverage

Code Generation
• HDL code generation

• RTL verification : Reuse Simulink/MATLAB testbench components

through:

▪ SystemVerilog (SV) DPI-C model generation
▪ UVM bench generation

Traditional Verification Workflow

Requirement phase is Document-based Workflow
• Requirements as PDF/Word doc are passed from Systems team to Design team.

• Verification tests are run when RTL is available.

• Bug reports can result in spec changes due to incomplete specification. This often drives changes to RTL and testbench.

Model-Based Verification

• Model acts as executable specification. Shift-left Verification by simulating at Model level.
• Leverage model-based testbench environment to generate SystemVerilog testbench components

Benefits of Model-Based Verification (MBV)

MBV is a great solution for the Shift-Left verification in terms of:

• Being easy to update when requirements change.

• Enabling earlier verification and supporting building design functionality more
quickly.

• Authoring and managing regression test-suites.

• Auto generate standalone UVM components from Simulink that can be
integrated into the UVM environment.

Simulink Testbench Model Example

Simulink Subsystems and Generated UVM Testbench

There are six subsystems in a Simulink testbench model – each is named to reflect its functionality in
a UVM bench. Each subsystem should support C code generation.

• Sequence

• Test Sequence block is used to create different test scenarios consisting of functional test
scenarios and randomized test scenarios.

• There are two inputs namely seed which initializes the random number generator and
parameter to choose the test scenario.

• Driver

• The Driver subsystem handles the conversion of frame-based data to a scalar or floating point
to a fixed-point data.

• DUT

• The DUT subsystem is an implementation model of the algorithm.

• This model has been developed using Simulink blocks and MATLAB code that supports HDL
code generation.

Simulink Subsystems and Generated UVM Testbench

Predictor

• Predictor subsystem serves the purpose of a reference/DV model.

• MATLAB code developed here is drawn from the specifications

document.

Monitor

• The monitor subsystem converts DUT fixed-point output to floating

point for comparison in scoreboard.

Scoreboard

• Assertions are modeled in scoreboard using the ‘Assertion for DPI-C’

block.

• Cover-groups are modeled using the verify statement in a Test Sequence

or Assessment block.

Generated UVM Scoreboard Code fragment

UVM Bench Integration

Simulink Test env:
Sequence

Driver
Monitor
Predictor

Scoreboard

Generate UVM files:
Sequence

Driver
Monitor
Predictor

Scoreboard

UVM bench
integration:

Instantiate DUT out of
HDL Coder

UVM test env:
Reuse agent/env/sequence
Add complex constraints,
assertions, covergroups

uvmbuild()

UVM regression
(Regression Management

tool)

Reproduce bugs in
Simulink env using

Seed & Memory
configurations

Simulink Test
Manager

(Regression Management
tool)

Failed tests

Simulink Environment UVM Environment

Bugs caught using MBV flow

• Incomplete definition of equations and data type inconsistencies were identified
in the preliminary specification document.

• Some of the configurations were added in the later stages of the implementation
which does not exercise the safety flag checks.

• The conditional statements of a block turned out to be contradicting each other
when the block did not result in a valid output for all the input stimulus scenarios.

Enhancement requests for MBV flow

• Constraints on the input stimulus are limited to the minimum and maximum
ranges.

• Input stimulus is streamed based on the feedback/acknowledge signal received
from the DUT.

• uvmbuild() currently does not support feedback between DUT and Sequence.

• Scoreboard subsystem needs an acknowledge signal from DUT for
synchronization.

• Modeling of complex concurrent assertions is currently a challenge.

• MBV flow only supports basic cover groups modeling.

Conclusions

• Early model verification is more exhaustive because
verification engineers are best equipped to find out how
to break a design.

• Generation of better-quality RTL from the models with
expected saving of 2 months of verification effort.

• Reuse of models with their associated Simulink test
environments by Verification team for upcoming projects
is expected to save 2 months.

• Reuse of models by Systems Engineering to confirm that
implemented designs do what requirements specify.

• Allegro's customers could reuse models within their own
environments to confirm their requirements are met.

Thank you!

	Slide 1: Leveraging Model Based Verification for Automotive SoC Development
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Problem Statement (for Verification)
	Slide 5: Overview of Model-Based Design and Verification
	Slide 6: Traditional Verification Workflow
	Slide 7: Model-Based Verification
	Slide 8: Benefits of Model-Based Verification (MBV)
	Slide 9: Simulink Testbench Model Example
	Slide 10: Simulink Subsystems and Generated UVM Testbench
	Slide 11: Simulink Subsystems and Generated UVM Testbench
	Slide 12: UVM Bench Integration
	Slide 13: Bugs caught using MBV flow
	Slide 14: Enhancement requests for MBV flow
	Slide 15: Conclusions
	Slide 16: Thank you!

