(2024

DESIGN AND VERIFICATION ™

DVLCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Leveraging Model Based Verification for
Automotive SoC Development

Aswini Kumar Tata, Sanjay Chatterjee, Kamel Belhous — Allegro MicroSystems.
Surekha Kollepara - Cyient
Bhanu Singh and Eric Cigan - MathWorks

o’} MathWorks

SYSTEMS INITIATIVE




Agenda

e Introduction
 Problem statement

* Overview - Model-Based Design and Verification
* Traditional verification workflow
* Model-Based Verification

Simulink testbench model example
UVM bench integration

* Bugs caught using MBV flow

* Enhancement requests in MBV flow

e Conclusions

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION




Introduction

* Allegro Microsystems develops advanced mixed-sighal sensors — primarily
for automotive industry — that interface with mechanical systems that:
o Sense
o Regulate
o Drive

e Customer requirements are becoming more complex with reduced time to
market.

* We perform architecture and algorithm development for DSP blocks at a
higher abstraction layer for better definition and implementation -
Model-Based Design (MBD) with Simulink® from MathWorks.




Problem Statement (for Verification)

* Waiting to find RTL bugs in UVM environment from Model-Based
Design - too late and costly.

* Waste of critical verification time and digital simulator licenses by
debugging unrealistic scenarios with MBD-generated HDL.

* Too late to verify changes in customer requirements AND different
requirements from multiple customers on a chip during project cycle .

* Verification inefficiency if not reusing the Model-Based Verification
(MBV) effort in UVM environment for RTL verification through
complex constrained randomization and functional coverage.




Overview of Model-Based Design and Verification

Requirement SpeCification SIMULINK DESIGN VERIFICATION HDL CoDE VERIFICATION
. . | || ]
» Define requirements
. . . - Model—in—thefloopUnit.andIntegrationTesting - Regre.ssionTestingin Syster!NeriIog
* Annotate models with requirements (when available) > Model Coverage Analysis : Functional Coverage Analysis

* HDL Simulation with Generated and DV-enhanced UVM Bench

* Prevention of Unintended Functionality
AR LR AL LE R

Architecture Model
e Behavioral model simulated to fine-tune algorithms

Implementation and Testbench Model o
* DUT model that supports HDL code generation ¥ $ gz \ i

Architecture Verification

+ Model Reviews « HDL Coding

1
1
1
1
1
1
1
1
1
1
« Static Model Analysis}
:
i
! ~ + Standards Checking
1
1

[P
PR N

Requirements Architecture -] Implementation “-| Generated - ASIC / FPGA
° S|mUI|nk testbench model for DUT Specification Specification Model " TZiTIJ::II(C):T\:’IZZZI " -ﬂ\étﬂchnch | Simulation Bench
- ode

Simunnk DESign Verification Author Architecture Modeli HDL Code and SV

X . X . Requirements Development odeling Bench Generation
* Verifying model against requirements
* Regression run and Simulink model coverage [ ] pevelopment artfact
Code Generation - Development activity (tool)
° H DL Code generation D Development activity (Manual)

------ » Verification and validation activity

* RTL verification : Reuse Simulink/MATLAB testbench components
through:
= SystemVerilog (SV) DPI-C model generation
= UVM bench generation

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION




Traditional Verification Workflow

Requirement phase is Document-based Workflow

* Requirements as PDF/Word doc are passed from Systems team to Design team.

* Verification tests are run when RTL is available.

* Bugreports can result in spec changes due to incomplete specification. This often drives changes to RTL and testbench.

Coverage Review

Initial Effort Manual Testbench build

- Reference
* Rework ; Waiting for .
spec Ch - Stimulus BT D Regression
pec thanges . self-checking UVM bench rap
« Functional Coverage Model
SystemArchitect Verification Engineer

>

e - L i

peci ication —
[P

Spec Issues RTL Designer

G

RTL Drop

Bugs
»

[ SPEC Phase

(2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION




Model-Based Verification

* Model acts as executable specification. Shift-left Verification by simulating at Model level.
* Leverage model-based testbench environment to generate SystemVerilog testbench components

Model Update [ 4
I - P Model bench Update I_D!
Model Update Verification
Auto Generation Of Testbench Engineer

Spec Changes + SV DPIC Models

HDL Verifier + Individual UVM components Extend /Customize
Model Based —>

_I_, Tool + Full UVM Bench Testhench
Early Colloboration Bug report I_b- Testbench for Assertion code
for M°d9| Testbench DUT Algo - Functional coverage code
b Verification Engineer

Initial drop
SystemArchitect

Algorithm Model

RTL Engineer

o) ® )
RTL Dro,
D P
—— [ .
Specification ., Regression Run

Bugs

SPEC and Modeling Phase RTL Phase

Coverage Review

Auto-generated UVM Bench available when RTL Verification Phase
Model Bench is done

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION




Benefits of Model-Based Verification (MBV)

MBYV is a great solution for the Shift-Left verification in terms of:
* Being easy to update when requirements change.
* Enabling earlier verification and supporting building design functionality more
quickly.
* Authoring and managing regression test-suites.

* Auto generate standalone UVM components from Simulink that can be
integrated into the UVM environment.

2024

SIGN-AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|




Simulink Testbench Model Example

Predictor

4

sead
parameters
General Model Structure
o cowdc mngl |
ST S B ... ' mas_corde_asgl
g T Hini_condc_arg b
[T F O Coie e
§_bus_dw @_angd I | hi_reag_ardl min_cords _angl -
=l eree 2] ‘
Praedic b L S T
I S &gt s _Cors_ased
e _ece_anag E
- l_coma_mret min_corde_asgl -
Dty e Dresiy S AL Ao oo _angd el _angd ¢
ezl S wangl_danes Wi _corcie_ang T P = s _rmaag_asgl
e 2_oh aa "q; -1."‘-C angd
. N — =p= ret_em
IE—- et e _ch el Dl paser, Drver_parsee bl e T gl Sonef— 000000 o) -1 - = ~——1——|
anpt, i cne_mce_angis her e s -:B e meg
= 3 =
se=d TN i ey =hel_mce_angae mu::nn:n: - :';_ 5
Omver_reg Bus v Drwver_reg tus s | N SE _mcm_ang T —
N Lo ] £t £ | refl_mce_angd
tEsbraae _fnra_che Ciwer =l _eeordic Auhanratow hell_mcw
Eslcase = -
SemueToe

Sexwetoand
CORDIC Testbench Model in Simulink | f—e<Gormesee]

) EGNVAND VERIEICATION

CONFEREMNCE AND EXHIBITION




Simulink Subsystems and Generated UVM Testbench

~ TB_CORDIC_HARNESS_UVM_TESTBENCH

> DPI_dut
. R . . . . . . . ~ dri
There are six subsystems in a Simulink testbench model — each is named to reflect its functionality in Drver o1 koo .
a UVM bench. Each subsystem should support C code generation. Driver.so
mw_s|_cordic_driver.sv
° Seq uence ~ monitor
Monitor_dpi_pkg.sv 1
* Test Sequence block is used to create different test scenarios consisting of functional test Monitor.so
. . . v sl rdi itor.
scenarios and randomized test scenarios. bl el
mw_s| _cordic_predictor_trans.sv 2

* There are two inputs namely seed which initializes the random number generator and

mw_sl|_cordic_predictor.sv

parameter to choose the test scenario. Predictor dpi pkg.sv 1
Predictor.so
[ ] Driver ~ scoreboard
mw_s|_cordic_scoreboard_trans.sv
* The Driver subsystem handles the conversion of frame-based data to a scalar or floating point mw_s|_cordic_scoreboard.sv
H _ H Scoreboard_dpi_pkg.sv
to a fixed-point data. i
o DUT Scoreboard.so
v sequence
* The DUT subsystem is an implementation model of the algorithm. M8l cordic saguence franssv 2
mw_s|_cordic_sequence.sv 6
. . . . mw_s|_cordic_sequencer.sv
* This model has been developed using Simulink blocks and MATLAB code that supports HDL Sequence dpi.pkg.sv
code generation. Sequence.so
> top

> uvm_artifacts

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION




Simulink Subsystems and Generated UVM Testbench

harness uvm testhench/scoreboard/mw sl
harness _uvm_testbench/scoreboard/mw sl

cordic scoreboard.sv

\TLAB 9.

R import Scoreboard_dpi_pkg::¥;
PredICtor class mw_sl_cordic_scoreboard extends uvm_scoreboard;
“uvm_component_utils (mw_sl_cordic_scoreboard)

* Predictor subsystem serves the purpose of a reference/DV model. chandle objhandle;

* MATLAB code developed here is drawn from the specifications Scoreboard_dpi_pkg: : veomp;

docu ment uvm_analysis_export #(mw sl cordic scoreboard trans) mw sl cordic agent imp;
* uvm_analysis_export #(mw_sl _cordic_scoreboard trans) mw_sl_cordic_agent_imp_input_pred;
uvm_tlm_analysis_fifo #(mw_sl_cordic_scoreboard trans) mw_sl cordic_agent fifo;
uvm_tlm_analysis_fifo #(mw sl cordic scoreboard trans) mw sl cordic_agent fifo input pred;

Monitor

mw_s1_cordic_scoreboard trans mw_sl_cordic agent_trans;
mw sl cordic scoreboard trans mw sl cordic agent trans input pred;

* The monitor subsystem converts DUT fixed-point output to floating

function (string name = "mw sl cordic scoreboard", uvm_component parent);
. . . super. (name, parent);
point for comparison in scoreboard. .
endfunction // new

virtual function veid (uvm_phase phase);
Score boa rd super. (phase);

mw_s1_cordic_agent trans = new ("mw sl cordic agent trans");
mw_sl_cordic_agent_trans_input_pred = new ("mw sl cordic agent trans_input pred");

* Assertions are modeled in scoreboard using the ‘Assertion for DPI-C’ me_s1_cordic agent_inp = new (*m_sl_cordic agent inp", this);

mw sl cordic agent imp input pred = new ("mw sl cordic agent imp input pred”, this);
mw_sl_cordic_agent_fifo = new ("mw sl cordic agent fifo", this);
block mw_sl_cordic_agent_fifo_input pred = new ("mw sl cordic agent fifo input pred", this);
endfunction: bu e
* Cover-groups are modeled using the verify statement in a Test Sequence | virta function void onnect phase (wwm_phase phase);
super. phase) ;
mw_sl_cordic_agent_imp. (mw_sl_cordic_agent_fifo.analysis export);
or Assessment bIOCk_ mw sl cordic agent imp input pred. (mw s1 cordic agent fifo input pred.analysis export);
endfunction // connect phase

Generated UVM Scoreboard Code fragment

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION




UVM Bench

Simulink Environment

Simulink Test

Manager
(Regression Management
tool)

Simulink Test env:
Sequence

Integration

Generate UVM files:

Sequence

Driver uvmbuild() Driver

Monitor
Predictor
Scoreboard

Reproduce bugs in
Simulink env using
Seed & Memory
configurations

SYSTEMS INITIATIVE

Monitor
Predictor
Scoreboard

Y UVMEnvionment

UVM bench

integration:
Instantiate DUT out of
HDL Coder

UVM test env:
Reuse agent/env/sequence
Add complex constraints,
assertions, covergroups

UVM regression
(Regression Management
tool)

(2024

DESIGN AND VERIEICATION™

DV

CONFERENCE AND EXHIBITION



Bugs caught using MBV flow

* Incomplete definition of equations and data type inconsistencies were identified
in the preliminary specification document.

* Some of the configurations were added in the later stages of the implementation
which does not exercise the safety flag checks.

* The conditional statements of a block turned out to be contradicting each other
when the block did not result in a valid output for all the input stimulus scenarios.

2024

SIGN-AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|




Enhancement requests for MBV flow

e Constraints on the input stimulus are limited to the minimum and maximum
ranges.

* Input stimulus is streamed based on the feedback/acknowledge signal received
from the DUT.

e uvmbuild() currently does not support feedback between DUT and Sequence.

* Scoreboard subsystem needs an acknowledge signal from DUT for
synchronization.

* Modeling of complex concurrent assertions is currently a challenge.

* MBV flow only supports basic cover groups modeling.

2024

SIGN-AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|




Conclusions

* Early model verification is more exhaustive because
verification engineers are best equipped to find out how
to break a design.

e Generation of better-quality RTL from the models with
expected saving of 2 months of verification effort. /

* Reuse of models with their associated Simulink test N
environments by Verification team for upcoming projects 2NN
is expected to save 2 months.

* Reuse of models by Systems Engineering to confirm that
implemented designs do what requirements specify.

 Allegro's customers could reuse models within their own D
environments to confirm their requirements are met.

Conventional vs Model Based approach

Conventional approach
Model Based approach

# of bugs

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION




Thank you!

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION




	Slide 1: Leveraging Model Based Verification for  Automotive SoC Development
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Problem Statement (for Verification)
	Slide 5: Overview of Model-Based Design and Verification
	Slide 6: Traditional Verification Workflow
	Slide 7: Model-Based Verification
	Slide 8: Benefits of Model-Based Verification (MBV)
	Slide 9: Simulink Testbench Model Example
	Slide 10: Simulink Subsystems and Generated UVM Testbench 
	Slide 11: Simulink Subsystems and Generated UVM Testbench 
	Slide 12: UVM Bench Integration
	Slide 13: Bugs caught using MBV flow
	Slide 14: Enhancement requests for MBV flow
	Slide 15: Conclusions
	Slide 16: Thank you!

