
It’s Not Too Late to Adopt:
The Full Power of UVM

Kathleen Wittmann
Rockwell Automation

1201 South Second Street
Milwaukee, WI 53204

Abstract-The Universal Verification Methodology (UVM) has existed for over a decade, with its predecessors existing
before that. According to Siemens EDA's 2020 Wilson Research Group functional verification study, Accellera UVM is
the most used standard adopted for testbenches. With use in over 70% of IC/ASIC testbenches[1] and over 40% of
FPGA testbenches[2], there is still room for further adoption.

Upon completion of my group's most recent ASIC development, our retrospective identified several simulation
efficiencies we wanted to adopt:

1) Incremental compilation, where rather than rebuilding all source files for every testcase run, only modified
files are recompiled. This technique saves compilation time.

2) Elaboration snapshots, where the design and testbench are elaborated once and subsequent testcase runs go
straight to simulation. This technique saves compilation and elaboration time.

3) Simulation snapshots, where a snapshot is taken at some point in a simulation and subsequent testcase runs
begin at that point. This technique saves compilation, elaboration, and simulation time.

I was tasked with piloting these techniques, providing benchmark comparisons, and recommending the next steps. In
exploring these techniques, I had a key realization about our testbench. While we were using elements of UVM in our
testbench, we had not fully migrated away from using Verilog compiler directives to statically configure our testbench.
We had not yet adopted the full power of UVM to dynamically configure our testbench. This lack of dynamic
configuration was causing us to miss all three simulation efficiencies we wanted to adopt.

Between the Wilson Research Group's findings about UVM adoption and my experience with partial UVM adoption,
a target audience of late UVM adopters remains. This paper targets those late adopters and those partial adopters. It
will describe the statically configured UVM environment I encountered and the barriers it placed to achieving simulation
efficiencies. It will quantify the productivity lost by not being able to achieve the simulation efficiencies. Finally, it will
highlight the key components of UVM that were necessary for realizing its power.

I. BARRIERS TO SIMULATION EFFICIENCIES

Elaboration and simulation snapshots require the testbench to have the same static structure across tests. When
conditional compiler directives like `ifdef are used in the testbench environment and the defined macros are
inconsistent across tests, the result is a different static testbench structure across tests.

Some use cases warrant macros and conditional compiler directives in a testbench, e.g., to choose whether to
instantiate the ASIC version of the Design Under Test (DUT) or the FPGA-prototype version of the DUT. However,
they can also be overused, which I encountered in my testbench.

Figure 1 demonstrates the use of conditional compiler directives that I encountered in my testbench. In testcases
that define the USB_VIP macro, the UVM Environment will include the USB Agent. In testcases that do not define
the USB_VIP macro, the UVM Environment will not include the agent at all. The result is a different static
environment, meaning that elaboration and simulation snapshots cannot be used. Additionally, the environment must
be recompiled, and the command line and/or the arguments file must be extended when the macro is used.

Later in this paper, I will present a better way to define and configure this UVM environment for using or not using
the USB VIP for a particular test.

Figure 1. Environment Definition with Conditional Compilation

II. PRODUCTIVY LOST… AND GAINED
There are several ways in which productivity was lost due to the statically configured UVM environment presented

in Figure 1:
1) The environment must be recompiled when USB_VIP is defined or not.
2) Elaboration and simulation snapshots cannot be used across tests that define USB_VIP and those that do not.
3) The command line and/or the arguments file must be extended when the macro is used.
One might suggest managing two separate compilation libraries and snapshots for the two cases of USB_VIP being

defined or not; however, the use of conditional compiler directives was more extensive than conveyed in this example.
As a result, compilation, elaboration, and simulation were performed for every single testcase.

The first step to motivating the adoption of an improved verification environment was to benchmark the
performance gains available in incremental compilation and elaboration and simulation snapshots. A test suite of 31
tests, with an initial average run time of 31.5 minutes per test, was identified for this benchmarking exercise. This
was just one test suite of an overall ASIC regression that consists of approximately 2000 tests.

Moving to an environment that could be compiled once and the compiled library used across testcases would save
0.8 minutes per test. Multiply that savings across 2000 tests, and 1600 minutes of processing time have been saved,
or 26.7 hours.

Having one common work library across testcases opens the opportunity to use elaboration snapshots. The DUT
and testbench can then be compiled and elaborated once and simulated many times. Using the same 31-test suite, I
found that 8.6 minutes could be saved per test. Across 2000 tests, it is nearly 12 days of processing time.

Of course, DUTs and testbenches and regression suites all differ, but these numbers give an idea of the productivity
my group was losing and that we stood to gain.

III. REALIZING THE POWER OF UVM

Instead of statically configuring a verification environment as demonstrated in Figure 1, UVM offers the ability to
dynamically configure the environment.

Figure 2 demonstrates how the UVM environment can be rewritten to take advantage of this dynamic configuration.
In this environment, the USB Agent is always a member of the environment, but whether it is built depends on how
the environment has been configured.

Figure 2. Environment Definition with Dynamic Configuration

The UVM test configures the UVM environment and is where object-oriented programming’s (OOP) polymorphism

concept adds power to UVM. Figure 3 defines the base test for this testbench. It defines a virtual function,
configure_dut_env, to configure the environment. This function sets the environment configuration object’s member
has_agent_usb to 1, indicating that the environment should create the USB Agent.

Figure 3. Virtual Function in Test Base Class

Tests that inherit from the test base class have two options:
1) A test that inherits from the test base class can use the base class’s function to do a default configuration. In

this case, a test that inherits from dut_test_base would not define an overriding configure_dut_env function.
When this inherited test then calls configure_dut_env in its build_phase, it executes its parent’s
configure_dut_env. In this example, the configure_dut_env function defined in Figure 3 is executed and sets
has_agent_usb to 1.

2) Alternatively, a test that inherits from the test base class can declare its own overriding function. This
overriding function follows the same prototype as the function in the base class – the same name, inputs, and
outputs. Because virtual methods are inheritable and overridable, there is only one implementation of a virtual
method per class hierarchy, and it is always the one in the last derived class. Therefore, when this inherited
test then calls configure_dut_env in its build_phase, it executes its own overriding function. In the example in
Figure 4, the function in the derived test_without_usb class is executed. It sets has_agent_usb to 0, resulting
in the USB Agent not being created.

Figure 4. Overriding Function in Derived Test

IV. BUILDING ON THE POWER OF UVM
The previous section presented a simple example of how a virtual function and function override are used to

dynamically configure the UVM environment for a given test. In the example, the environment either created or did
not create the USB agent, depending on how the test class configured the environment. This same method can be
used to build or not build other components, like a scoreboard. For example, it is common to elect to not build the
scoreboard in register tests, where the only concern is whether the register fields reflect the proper access modes.

Sequence override is another powerful option in UVM. In the past, my organization largely used a 1:1 UVM test
to sequence relationship. Each test started one main sequence, which would stimulate the DUT as specified for that
testcase and possibly perform some error checking. We found that some error checking was better performed in that
sequence than in the scoreboard. Figure 5 demonstrates the definition of two such tests.

Figure 5. One Sequence for Every Test

This approach of having each UVM test run a dedicated sequence is acceptable and may be well-suited to some

projects. In this example, the two tests did not share a common stimulus, such as a common initialization sequence.
Where simulation snapshots add value is in allowing a long initialization sequence to be simulated once and

subsequent simulations to pick up where it ended and spend the compute time on new and interesting stimuli rather
than on initializing the DUT again.

In investigating simulation snapshots for my organization, we used the Cadence simulator. Its simulation snapshot
method, called Process Based Save Restart (PBSR), requires a single UVM test from which different sequences can
be started [3]. Figure 6 provides an example of this single UVM test. In this example, the test first starts an
initialization sequence and then starts a stimulus sequence. The simulation snapshot is created between the two

sequences. The first invocation of this test would create the simulation snapshot and run the default ‘seq_stim_base’
sequence. Subsequent invocations would use the simulation snapshot and override ‘seq_stim_base’ with a different
sequence to achieve a new stimulus.

Figure 6. Test Used in Simulation Snapshot

Sequence override is achieved through inherited sequence classes. Three sequences are declared in Figure 7. The

first, usb_seq_base, is the sequence that test_usb of Figure 6 starts by default. The other two sequences,
seq_exercise_dma and seq_suspend_resume, inherit from usb_seq_base. Because of this inheritance, an invocation
of test_usb after the creation of the simulation snapshot can go straight to the point where initialization has already
been completed and execute a new and interesting stimulus by overriding usb_seq_base with a derived class.

Figure 7. Derived Sequences for Use in Simulation Snapshots

This paper previously reported that using elaboration snapshots saved 8.6 minutes per test in a 31-test benchmark.
Simulation snapshots can save even more by removing duplicated simulation cycles from the overall regression.
Across a 2000-test regression, the savings can easily amount to days of processing time.

V. INSTITUTIONALIZING THE POWER OF UVM

Given the efficiency gained by fully adopting the dynamic configuration power of UVM, it is important to enable
that adoption. To that end, my organization has taken some steps.

First, the efficiency data in this paper has been presented as the motivation for why we must make changes.
Second, a script and templates were written to automate the creation of UVM testbenches. This template-based,

automated testbench generation guarantees a similar look and feel across testbenches and builds in the elements needed
for dynamic configuration from the start. Some details about the script, templates, and generated testbench are
presented in the next section.

Finally, periodic knowledge share, a documented methodology, and a review of the testbench at the start of each
new project will help to institutionalize the full adoption of UVM.

In taking these steps, one important thing my organization formalized is a plan for sequence inheritance. Figure 7
declared usb_seq_base and two sequences derived from it. usb_seq_base itself derived from dut_seq_base, which is
now presented in Figure 8.

Figure 8. Sequence Base Class for the DUT

The intent is for dut_seq_base to serve as the sequence base class in a top-level testbench. It declares elements that

might be common to all derived sequences, such as register models and tasks to reset the DUT or wait for a specified
amount of time.

Within that top-level testbench, a suite of tests may require components, functions, and tasks that are unique to it
and do not belong in dut_seq_base. A subsystem base sequence class, like usb_seq_base in Figure 7, derives from
dut_seq_base and declares elements specific to its suite of tests. Other test sequences for that subsystem, for example
seq_exercise_dma and seq_suspend_resume in Figure 7, would then derive from the subsystem’s base sequence class.
This class hierarchy is demonstrated in Figure 9.

dut_seq_base

usb_seq_base spi_seq_base

seq_exercise_dma seq_suspend_resume

Figure 9. Sequence Class Hierarchy

VI. THE TESTBENCH ITSELF
As mentioned in the second step outlined in the previous section, my organization wrote a script and templates to

automate the creation of UVM testbenches, build in the elements needed for dynamic configuration, and lay the
groundwork for the sequence inheritance needed for simulation snapshots. The perl script’s only required input is the
unit name, and it optionally takes the names of up to four agents, a register block name, the default address map for
that register block, and a register adapter. The script invokes SystemVerilog Assistant, a tool in the HDL Designer

Series of tools from Siemens EDA, to generate a UVM environment and testbench from pre-existing templates. These
templates are ultimately derived from templates provided with the Siemens EDA tool. The script then fills in
component names throughout the UVM environment, based on the specified inputs.

The script generates a testbench that puts the SystemVerilog interface for each agent into the uvm_config_db and
calls run_test(), where the testcase name is specified on the command line. This generated testbench is shown in
Figure 10.

Figure 10. Generated Testbench

The testcase name specified on the command line is a UVM test derived from the test base class. The script and

templates generated the test base class, and its members include environment and agent configuration objects. The
derived test may choose to override a default environment or agent configuration through an overriding function, as
shown earlier in this paper in Figure 4.

During their build_phase, the test base class, and therefore any derived class, gets the virtual interfaces out of the
uvm_config_db and assigns them to their agent configuration objects. Recall that the virtual interfaces were put into
the uvm_config_db by the testbench itself, shown in Figure 10. The test then creates the environment.

 During their connect_phase, the test base class and its derived classes connect sequencers from the active agents in
the environment to sequencers in the environment configuration object. Figure 11 declares a test base class,
dut_test_base, and shows the creation of these environment and agent configuration objects and their connections to
the agents in the environment. Figure 12 depicts the architecture itself and the connection of configuration objects.

Figure 11. Test Base Class Creation of Configuration Objects

UVM Test

dut_tb

UVM environment

APB Agent

Sequencer Driver

Config Monitor

WaveGen Agent

Sequencer Driver

Config Monitor

SPI Agent

Sequencer Driver

Config Monitor

Coverage

DUT

wave_gen_if

spi_uvc_if

Register Model

Config

APB InterfaceScoreboard

Environment Config

Register Model

Agent Config(s)

Figure 12. UVM Test Architecture

The test, derived from the base test class, calls sequences that are often derived from a sequence base class, like

dut_seq_base or usb_seq_base. These sequence base classes get the environment configuration object from the
uvm_config_db in order to use the sequencers that were connected by the test. This retrieval of the environment
configuration object and its sequencers is demonstrated in Figure 8.

The environment, created by the test base class, also gets the environment configuration from the uvm_config_db
and uses it to determine what agents, scoreboards, and coverage classes to create and connect. The environment’s use
of the environment configuration is demonstrated in Figure 2.

This description of our generated testbench demonstrates the importance of configuration objects in the overall
structure of a UVM-based testbench, as well as to its dynamic configuration. The UVM test uses these configuration
objects to configure and convey information to the UVM sequences and UVM environment and beyond.

VII. SUMMARY

This paper touched on just a couple of UVM’s “powers.” First, productivity gains can be achieved when incremental
compilation and elaboration snapshots are made possible with a dynamically configured testbench. Second, even
more productivity gains can be achieved when simulation snapshots are enabled through a carefully planned approach
to sequence class inheritance.

There are still more “powers” to be enjoyed than what was discussed in this paper. For example, a UVM register
model can be used to abstract the registers in a design. Realizing these “powers” does take an investment in
knowledge, methodology, and infrastructure, but there are rewards to be reaped.

REFERENCES
[1] Siemens EDA, “2020 Wilson Research Group functional verification study: IC/ASIC functional verification trend report.”
[2] Siemens EDA, “2020 Wilson Research Group functional verification study: FPGA functional verification trend report.”
[3] Cadence, “Process based save restart in UVM.”

