
It's Not Too Late to Adopt:
The Full Power of UVM

Kathleen Wittmann



Simulation Flow

Compile Elaborate Simulate

Work Library



Methods for Improving Simulation Efficiency
• Incremental Compilation:

• Once compiled, only modified files are recompiled.
• Saves compilation time.

• Elaboration Snapshots:
• Design and testbench are elaborated once. Subsequent testcase runs go 

straight to simulation. 
• Saves compilation and elaboration time.

• Simulation Snapshots:
• A snapshot is taken at some point in a simulation. Subsequent testcase runs 

begin at that point.
• Saves compilation, elaboration, and simulation time.

Work Library

Compile Elaborate Simulate



Requirements for Incremental Compilation 
and Elaboration Snapshots
• Same Work Library across tests
• The same static testbench across 

tests

Work Library

Compile Elaborate Simulate

A different static environment results, based on whether 
USB_VIP is defined or not



Simulation Flow

If the testbench is the same from test to test, the flow 
can be optimized to skip right to simulation.

In a 2000-test regression, this optimization saves nearly 
12 days of processing time.

Compile Elaborate Simulate

Work Library

0.8 minutes 7.6 minutes Variable time, depending on test stimulus

8.6 minutes



Rewritten UVM Environment
Statically Configured Dynamically Configured



The UVM Test Configures the UVM 
Environment



UVM Test Inheritance
has_agent_usb will be 1

has_agent_usb will be 0



Requirements for Incremental Compilation 
and Elaboration Snapshots
• Same Work Library across tests
• The same static testbench across 

tests

Work Library

Compile Elaborate Simulate

Dynamic Configuration of the UVM Environment enables these requirements to be met.

Incremental Compilation & Elaboration Snapshots are now a reality!



Simulation Snapshots through Sequence Override
Instead of the 1:1 UVM Test to UVM Sequence ratio 
on the left, sequence override enables a 1:N ratio



Sequence Override through Inherited 
Sequence Classes



Improved Simulation Efficiency

Compile Elaborate Simulate

Work Library

Eliminate or 
Reduce through 

Incremental 
Compilation

Eliminate through 
Elaboration Snapshot

Reduce through 
Simulation 
Snapshot

Embracing the full power of UVM can lead to simulation efficiency



Institutionalizing the Power of UVM
1. Benchmark and share the data to motivate change
2. Automate the creation of UVM testbenches
3. Document a methodology
4. Periodic knowledge share and review of the testbench



Document a Methodology:
Sequence Inheritance

dut_seq_base

usb_seq_base spi_seq_base

seq_exercise_dma seq_suspend_resume



Document a Methodology:
UVM Testbench Generation

UVM Test

dut_tb

UVM environment

APB Agent

Sequencer Driver

Config Monitor

WaveGen Agent

Sequencer Driver

Config Monitor

SPI Agent

Sequencer Driver

Config Monitor

Coverage

DUT

wave_gen_if

spi_uvc_if

Register Model

Config

APB InterfaceScoreboard

Environment Config

Register Model

Agent Config(s)



UVM Test Base Class

1) Create the agent configuration
2) Get its virtual interface out of the 

uvm_config_db
3) Assign the virtual interface to the 

agent configuration
4) Further configure the agent



Importance of the Configuration Object to 
Sequences

Sequence retrieves sequencers from the 
environment configuration object



Importance of the Configuration Object to the 
Environment

Environment builds components specified 
in the environment configuration object



Summary
• Some macros do have value (e.g. ASIC vs. FPGA)
• Use UVM to dynamically configure your environment
• The virtual keyword is powerful!
• The configuration object plays a critical part in configuring a UVM 

Environment for a particular UVM Test
• Sequence override adds even more power to UVM
• Take advantage of methods that improve simulation efficiency
• Realizing “The Full Power of UVM” requires an investment in 

knowledge, methodology, and infrastructure



Questions?


