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The violation check process for design verification
involves iterative simulations to ensure a design’s correct
functionality and behavior before its tape-out. In each
simulation iteration, the violations are output to flag
suspicious conditions. Designers need to manually review
the violations which are either waivable violations (false
alarms) or true design issues that must be fixed. The
review process requires cross-team expertise of design
domain knowledge and lots of time to investigate
violations. As the complexity of the design increases, the
overwhelming workload during the time-limited violation
review process may jeopardize the correction for the RTL
code and induce Engineering Change Order (ECO) after
RTL freeze.

We present a solution with a machine learning based AI
Checker to identify highly dubious violations. We aim to
reduce manual review effort on violations and shift the
bugs left, making them solved earlier.

This work proposed an approach that applied ML
techniques to assist the violation review process and
presented the empirical study on the Isolation check. The
result demonstrated that we could reduce at least 12%
and up to 50% review effort without human experts’
involvement while detecting all design issues. It achieved
the shift left of design issues so domain experts could
tackle bugs earlier. Hopefully, starting from the promising
experiment result of 3 designs, the proposed AI Checker
can be generally applied to other design check flows.
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APPROACH
We proposed three steps to

learn an AI Checker for violation
classification. In the first step, we
convert violation log texts into
Bag-of-words (BoW) vectors and
form a Document-term Matrix
(DTM). Next, we generate two
features to represent critical data
characteristics of violation logs,
increasing the generalization
ability and robustness of the
model. Finally, we constructed an
ensemble model to diversify
predictions and optimize the
class i f icat ion performance .
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[Step 3] Train the ensemble model to boost performance
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We could observe that as
more methods joined in,
the recall rate was closer to
1. There was a trade-off
between the recall and
review reduction rate. In
our Config.5, we could
achieve 50%, 12% and 18%
review effort reduction for
designs {A, B, C}.
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