
Technical Documents Version Management 

System Based on Large Language Models 
 

S. S. Zalivaka 

SK hynix memory solutions Poland 

224 Juliusza Slowackiego,  

Gdansk, 80-298 

 
Abstract-Analysis of the technical documents is a crucial part of the design and verification process. Since manual 

analysis requires significant efforts from the engineers, automation using natural language processing techniques is a 

promising direction of the efficiency improvement. This research shows that utilization of the information from the previous 

versions of the document increases the overall performance of the automation tools. The proposed method is based on two 

models, i.e., sentence embedding for the existing requirements detection and an ensemble of large language models, which 

recognizes new requirements. As a result, the combination of these algorithms gives an increase in F1-score comparing to 

the existing works (0.901 vs 0.754). Furthermore, the proposed approach works with the requirements of varying length 

and takes the context in a more flexible way. 

 

I.   INTRODUCTION 

Development of any technical system is based on requirements, which are implemented by the designers and 

thoroughly examined by verification engineers. At the same time requirements are based on different kinds of technical 

documents. According to the ISO 01.110 standards, there are various types of technical documents: patents, 

specifications, datasheets, test methods, manufacturing standards, system requirements, system architecture, system 

design, etc. [1]. 

Nowadays natural language processing (NLP) methods are becoming ubiquitous for the text processing and analysis 
tasks. Several works [2-3] have shown that requirements for software and hardware development tasks can be 

automatically extracted with decent accuracy (more than 80 %). However, the existing approaches do not take into 

account previous versions of the documents [4] and analyze limited and fixed amounts of text (e.g., sentence or 

paragraph) [2-3]. There are also Large Language Model (LLM) driven approaches based on prompt engineering 

techniques [5]. Nevertheless, as shown in [3], even a very large generic model performs less successfully if it was not 

trained within a specific domain. 

The proposed technique is a two-stage algorithm. First, it compares the requirements from the previous version of 

the document with the newer version and detects the requirements with the same text or slightly modified ones based 

on the sentence embedding technique [6]. Second, it applies an ensemble [7] of LLM based classifiers to detect new 

requirements. This approach allows detecting 100% of previously existed requirements and around 80% of the new 

requirements, which increases the overall accuracy up to over 90%. 
II.   THE PROPOSED APPROACH 

A. Dataset description 

The M-PHY 4.1 specification [8] has been analyzed manually for the purpose of verification by extracting 

requirements and designing test environment to check the correctness of the protocol operation. As a result, the 

specification has been split into 219 pages of text consisting 4629 sentences: 772 of them are related to the 

requirements and 3857 are not. An example of data extracted from page 24 is shown in Fig. 1. 

Since the majority of the technical documents are represented in a form of *.pdf file, the parsing process is 

challenging due to the difficulties of extracting different types of information, i.e., text data, images, tables, lists, 

footnotes, etc. [9]. This process can be simplified by converting initial pdf-file into *.doc/*.docx format by using 

Adobe tools [10] or openly available Python libraries (e.g., pdf2docx [11]). The doc-file can be parsed in an easier 

way because it is stored in an XML-like format, which makes parsing and processing simpler. 

To parse M-PHY 4.1 specification, the specification file has been converted to *.docx format using pdf2docx and 
further analyzed using Unstructured library [12]. Unfortunately, the current way of parsing does not always provide 

100% quality and requires manual review to confirm that the parsed text blocks are correctly split into sentences and 

the content of figures, tables and footnotes is separated. Then, the text elements are combined with labels into a *.json 

format, as shown in Fig. 1. 

Different technical documents are typically edited in various ways depending on preferences of the publisher. As a 

result, it is almost impossible to design a universal parsing algorithm handling all the issues that arise during the 

document processing. Thus, currently the manual post-processing is an unavoidable practice. 



 
Figure 1. An example of data extraction from M-PHY 4.1 specification (page 24). 



For the validation purpose, the M-PHY 6.0 [13] specification has been used. This specification has been parsed in 

a different way, i.e., excluding headers and footers text, section and subsection titles, etc., into 249 pages containing 

2892 sentences: 1246 of them are requirements and 1646 are non-requirements. 

B. Structure of the version management system 

Consider two versions of a document (specification): the first version of the document is x (older version), the 
second version of the document is y (x < y). The block diagram of the proposed method for processing these two 

documents is shown in Fig. 2. 

 

Figure 2. Block diagram of the document version management system. 

Requirements from the document v. x can be extracted with a pre-trained classifier (M=0) or manually (M=1). Then, 

the extracted requirements are processed with an LLM, which computes embeddings for each atomic part. The same 

LLM is used for the embeddings computation for the content of the document v. y, i.e., the whole content, not just 

requirements, as they are unknown and need to be recognized. As a result, embeddings of the requirements from the 
document v. x (Ex) and embeddings of the atomic parts from the document v. y (Ey) are saved to the storage for the 

embeddings. The storage can be implemented in different ways, e.g., as a vector database [14]. 

After the preparation step, the embeddings from the storage can be processed to determine the class of the each 

atomic part of the document v. y. The two steps should be completed for each embedding vector Ey of the newer 

version of the document. First, vector Ey is compared to the vectors of requirements Ex to find the vector closest to Ey. 

The similarity metric can be different (e.g., cosine similarity [15]) as well as the algorithm of finding the closest 

vectors (e.g., approximate nearest neighbor search [16]). Based on the similarity metric, the closest vector gets a 

similarity metric S (the real number from 0 to 1), which is compared to the threshold value Th (the real number from 

0 to 1). If the value of S = 1.0, the vector Ey can be classified as an "exact match" (class 0, T=0). If the value of S is 

greater than Th and smaller than 1.0, the vector Ey can be classified as a "good match" (class 1, T=1). These two classes 

can be determined without using the classifier (machine learning model) per se, but can be used as an additional data 
feature during the classifier training. If the value of S is smaller than Th, the second stage of the proposed algorithm 

is initiated, i.e., the classifier determines the type of the vector Ey as the one having requirement (class 2, T=2) or as 

the one without the requirement (class 3, T=3). 

As a result, all the atomic parts of the newer version of the document are classified into four types. Class 1 (T=1) 

can be used to show the editing differences between requirements in the older and newer versions of the document. 

The quality of the requirements detection highly depends on the classifier performance as it may perform worse on 

the parts of the document it has not been trained on. Subsequently, the quality of the classifier can be improved by 

using a large amount of diverse data extracted from technical documents. 

C. Classifier description 

The basic element of the proposed approach is multi-label classifier based on an LLM. The structure of the classifier 

with S-sentence context window is shown in Fig. 3. 



 

Figure 3. Multi-Label classifier block diagram. 

If a dataset has N sentences, the number of data points for this classifier is ceil(N/S). Therefore, the bigger context 

window size (S) is chosen, the smaller dataset is used for the training process. Since different documents require 

different sizes of the context window, the multiple (K) multi-label classifiers are used to form an ensemble model. 

Ensemble model is based on K models with different context windows S0 < S1 < ... < SK-1. These models are trained 
on the same dataset, but split into different number of data points (ceil(N/S0), ceil(N/S1), ..., ceil(N/SK-1), 

correspondingly). Each model generates N labels (S0 - Label0
(S0), ..., LabelN-1

(S0), S1 - Label0
(S1), ..., LabelN-1

(S1), ..., SK-1 

- Label0
(SK-1), ..., LabelN-1

(SK-1)). Based on label values, the ensemble neural network is trained in order to improve the 

quality of generated labels (Label0
(E), ..., LabelN-1

(E)). The structure diagram of the proposed approach is shown in Fig. 

4. 

 

Figure 4. Ensemble model block diagram. 



Consider classifier with Si (0 ≤ i ≤ K-1) sentences context window. It receives ceil(N/Si) data points, each of them 

containing Si sentences. If N is not a divisible by Si, the last data point should be appended by  

N - (floor(N/Si)×Si) sentences with some text (e.g., "This is not a requirement") to make the number of sentences in 

the last data point exactly Si. All N×K labels form a dataset for training ensemble neural network, which tunes the 

weights in order to predict final label value for each sentence based on the K labels provided by classifiers. 
As a result, the model provides a balanced prediction of the requirements for the document text taking into account 

context windows of different size. 

III.   EXPERIMENTAL RESULTS 

A. Experiment description 

The proposed method has been tested on M-PHY specifications [8-9] versioned as x=4.1 and y=6.0. These 

documents have been manually processed by verification engineers as a part of the verification IP design process. The 

atomic parts from both documents have been processed using Sentence Transformers library [17] with the "SFR-

Embedding-Mistral" LLM [18] to obtain the embedding vectors. The embedding comparison algorithms have been 

implemented in three ways: Qdrant vector database [19], embedded semantic search from Sentence Transformers [20], 

Levenshtein distance based algorithm [21] (this approach does not require embedding vector and can be applied 

directly to strings). The threshold value Th is 0.9 for all algorithms. 

B. Classifier training 
The basic element of the ensemble model is an LLM-based multi-label classifier. In this experiment, the S-label 

Mistral v.0.1 model [22] has been utilized as a basic classifier. Classifiers with different parameter S = {2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 

75, 80, 85, 90, 95, 100} (43 classifiers) have been trained on the M-PHY based dataset (70% – training data, 30% – 

validation data). Each classifier with a fixed hyper-parameter S has been trained for 30 epochs using default Adam 

optimizer (β1 = 0.9, β2 = 0.999), initial learning rate α = 0.0001 and weight decay to decrease the overfitting effects. 

Each model has been also quantized to 4 bits to fit the size of the GPU memory. The distribution of F1-scores for the 

classifiers is shown in Fig. 5. 

 
Figure 5. The performance of trained classifiers depending on context window size (S). 

As shown in Fig. 5, the performance of the classifier decreases with increasing the context window size (S). Bigger 

value of the hyper-parameter S leads to decreasing the number of data points in the training set. Therefore, classifiers 

with smaller context window size usually perform better. Some performance drops (e.g., S = 75) can be explained by 

poor split into text blocks. Therefore, it is reasonable to use classifiers with S ≤ 30 as the number of data points does 

not drop under 100 items. Training time for each classifier is around 2 hours and it slightly decreases (by 2-3%) with 

the increase of the parameter S value. 

Since the classifiers have different sizes of the validation set (in sentences), it is hard to assess them by the same 

metric. Therefore, the number of erroneously classified sentences within the whole specification is chosen as a metric 
to compare the performance of a single classifier and an ensemble model, utilizing a couple of classifiers. Since the 



number of the classifiers is relatively large (43), there is no possibility to compare all possible combinations (243). 

Instead, the classifiers were combined sequentially: the first ensemble model contains only one classifier (S={2}), the 

second – two classifiers (S={2, 3}), the third – three (S={2, 3, 4}), ... the 43th - 43 (S={2, 3, ..., 30, 35, 40, ..., 100}. 

The comparison between 43 single classifiers and 43 ensemble models is shown in Fig. 6. 

 
Figure 6. The comparison between single classifiers and ensemble models. 

The architecture of the ensemble model is a 5-layer fully-connected network (K Linear (input) -> 1024 ReLU 

(hidden) -> 512 ReLU (hidden) -> 256 ReLU (hidden) -> 128 ReLU (hidden) -> 1 Sigmoid (output)). ReLU is a 

rectified linear unit activation function. 

The ensemble model has a hyper-parameter K determining the number of context windows used as inputs. The 

inputs for the model are the probability values generated by chosen classifiers. The model has been trained for 30 

epochs using default Adam optimized with initial learning rate α = 0.001. The dropout technique (p = 0.2) for each 

hidden layer has been utilized to reduce overfitting. The training time even without using GPU is negligible (less than 

one minute) as the proposed model is relatively small. 

To achieve the negligible number of errors, it is enough to get from K=11 (8 errors) to K=16 classifiers (0 errors) 

model. Increasing the number of classifiers to the ensemble model does not provide a significant increase in 
performance, i.e., some of the combinations may give 1-2 errors, but the overall quality is comparable. 

Unfortunately, the amount of data from one specification is not enough to provide a robust performance on unknown 

data. The inference of the ensemble model utilizing K=15 classifiers has been tested on M-PHY specification v.6.0 

[13]. The ensemble model recognizes 100% of the requirements, which are inherited from the M-PHY v. 4.1 

specification, but recognizes only 80% of the new requirements. The outcome of the training process highly depends 

on the type of the document, its format, the style of the language, format of the tables and figures, etc. Thus, the 

algorithms trained on one type of specification would unlikely perform very well on another types of technical 

documents, as it was shown previously [3]. 

C. Two-stage method results 

The requirements from M-PHY v.4.1 specification (772 sentences) has been vectorized using the model for 

embedding detection without fine-tuning. The embedding vectors for the whole content of the M-PHY v.6.0 
specification (2892 sentences) have been also computed. Based on the two-stage algorithm described in section II, 

3 requirements with the same text and 550 requirements with similar text have been detected. The ensemble classifier, 

consisting of K=15 Mistral models fine-tuned on two H100 GPUs [23], has detected 569 new requirements. The other 

1770 sentences have been classified as non-requirements. Embedding computation requires around 3-5 minutes and 

another 15 minutes are required for the classification with ensemble model. The results of the experiment are 

summarized in Table I. 



TABLE I 

THE RESULTS OF THE PROPOSED METHOD OBTAINED ON M-PHY SPECIFICATIONS. 

Characteristic Vector database Semantic search Levenshtein distance 

Hardware 2 H100 GPUs 2 H100 GPUs Intel i7 CPU 

Time for computations (s) 248.498 + 923.45 (classifier 

time) 

167.150 + 923.45 (classifier 

time) 

1.915 + 923.45 (classifier time) 

T=0 (Exact match) 3/3 3/3 3/3 

T=1 (Good match) 550/550 550/550 490/550 

T=2 (New Requirements) 569/694 569/694 582/694 

T=3 (Non-Requirements) 1770/1646 1770/1646 1817/1646 

Percentage of recognized 

requirements 

90.05 90.05 86.27 

The vector database and semantic search approaches provide almost the same results as they are based on the same 

principles. The slight difference in their performance can be explained by a relatively small amount of data, which is 
more efficiently processed by the semantic search algorithm. The Levenshtein distance based algorithm has missed 

47 requirements because string comparison does not take into account the semantics of the compared strings. The 

results of the string comparison algorithm can be worse if the amount of data is greater. However, if the computational 

resources are limited, this algorithm can be considered as an alternative. 

The “good match” requirements (T=1) are slightly modified from previous specification to the newer one. Some of 

the examples of these requirements are shown in Table 2 with corresponding changes. 
TABLE II 

EXAMPLES OF REQUIREMENTS WITH INSIGNIFICANT CHANGES. 

Requirements in M-PHY v. 4.1 Requirements in M-PHY v. 6.0 Differences 

113 A LANE is a unidirectional, single signal, 

physical transmission channel used to 

transport information from point A to point B 

{- 113 }A LANE is a unidirectional, single 

signal, physical transmission channel used to 

transport information from point A to point B{+ 

.} 

The number 113 is removed. 

Full stop is added. 

266 TX_HS_ADAPT_Length >= 

RX_HS_ADAPT_INITIAL_Capability 

{- 266 }TX_HS_ADAPT_Length {>= -> ≥} 

RX_HS{+ _Gx}_ADAPT_INITIAL_Capability 

The number 266 is removed. 

The symbol >= is changed to ≥ 

Symbols Gx are added after HS. 

As shown in Table 8, the number and format 

of bits differ for different BURST states 

depending on the signaling scheme 

As shown in Table {8 -> 9}, the number and 

format of bits differ for different BURST states 

depending on the signaling scheme{+ .} 

The table index is changed from 8 to 9. 

Full stop is added. 

Table 60 M-RX-DATA Interface Signals 

(continued) 

Table {60 -> 51} M-RX-DATA Interface 

Signals{-  (continued)} 

The table index is changed from 60 to 

51. 

The text “(continued)” is removed. 

The quality of “good match” requirements detection depends on threshold value Th. Therefore, if this value is small 

(<0.3), the algorithm can wrongly detect non-requirement statements as requirements. On the other hand, the high Th 

values (>0.95) lead to the detection of only “exact match”-like requirements. As a result, tuning this parameter in a 
proper way allows avoiding erroneous requirements detection in a newer document if the requirements in the original 

document are correctly identified. 

The M-PHY v. 6.0 specification has 1246 requirements and 553 of them have been detected based on requirements 

similarity from M-PHY v. 4.1. Besides, the classifier has detected 569 new requirements. As a result, 1122 

requirements have been recognized and improved the accuracy of the fixed text classifier [3] from approximately 80% 

to approximately 90%. 

IV.   THE USE OF THE PROPOSED METHOD IN A VERIFICATION WORKFLOW 

The verification process is quite standard and usually based on specifications as a foundation. The modification of 

the usual workflow is shown in Fig. 7. 

 
Figure 7. The modified verification workflow.  



Specifications are usually analyzed by an experienced verification engineer in order to extract requirements. The 

proposed method targets to replace this stage with an automatic artificial intelligence (AI) system. The output of this 

system for a part of the M-PHY specification is shown in Fig. 8. 

 
Figure 8. The result of the automatic requirements recognition. 



The requirements inherited from previous versions of the specification are highlighted as dark blue (T=0, “exact 

match”) and as purple (T=1, “good match”). The rest of the requirements are highlighted with colors from yellow 

(high probability of being a requirement, i.e., from 0.5 to 1.0) to orange (medium probability, i.e., from 0.2 to 0.5) and 

white (no highlighting, low probability, i.e., less than 0.2). 

Based on this modification of the source specification, an engineer checks the quality of the recognized 
requirements, i.e., confirms or rejects the proposed output manually. Fig. 9 shows one of the processed requirements, 

which is related to the specification text and manually reviewed by a verification engineer. It can be further linked to 

test benches, checkers, models, etc.  

 

Figure 9. A requirement processed with the requirement management system. 

At present an engineer needs to decide what the best way to cover the extracted requirement is. Based on the current 

state of natural language processing, it is possible to provide suggestions and some initial drafts of the test benches. 

However, the quality of the discussed systems highly depends on the quality and diversity of the labeled data. It would 

be hard to expect good generalization ability from the algorithm trained on one or two full-text specifications. 

Furthermore, manual processing of the hundred-paged technical documents requires a significant amount of time of 

the qualified verification engineer. The cost of this time may exceed the cost of some automation of the verification 

process. However, since the specification analysis is unavoidable during verification IP development process [3], the 

inputs generated by the machine learning model may improve the performance of the requirements identification, 

decisions on the choice of  verification environment elements (test benches, test groups, checkers, models, etc.). 

Despite the difficulties, the automation of the technical document analysis flow has been tested on real projects 

utilizing M-PHY as a necessary component. Comparing to the previous verification experience, the LLM-guided 

process is faster and requires less time for on-boarding new members to the project. 
Thus, the long-term target is to significantly increase the amount of labeled data, which should exceed tens of 

thousands data points extracted from different kinds of specifications and/or other types of technical documents. Some 

minor improvements can be achieved by tuning the LLM-specific parameters [24].  

V.   CONCLUSION 

The combination of the sentence embedding based search algorithm and ensemble based classifier outperformed 

(90% vs 80%) previously published works [2-3] on a relatively small amount of data. There were no concerns that the 

proposed algorithm would suffer from overfitting, however, the bigger amount of various data extracted from technical 

documents would improve the quality significantly, as modern LLMs show great performance in text classification 

tasks. It is also worth noting that preparing multiple labeled documents requires significant efforts from experienced 

verification engineers and this is one of the challenges to be addressed. 

The proposed approach requires the full text of the documents, as it analyzes the contexts of varying length. On the 
other hand, it allows recognizing the non-sequential multiple sentence requirements. 
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