
Hierarchical Formal Verification and Progress
Checking of Network-On-Chip Design

Pritam Roy, Ping Yeung, Joon Hong, Abhishek Desai, Aishwarya Raj,

Chirag Agarwal, Dhruvin Patel

NVIDIA Corp.

Agenda
• Network-on-chip (NoC)

• Formal Strategy

• Node Formal test plan

• Switch Formal test plan

• Abstraction strategies

• Bug Examples

• Results

• Benefits of this approach

Network-on-chip (NoC)
• Mesh

• Node (16x to many)

• Router

• Switch (3x to 9x)

• Arbiter (many)

• Fifo (many)

FIFOArbiterArbiterArbiter
FIFOFifo

Switch

Node

Mesh
Router

node

NoC: Node
• 4 Types: ASN,BSN,CSN,MSN

• Tdbg: test, clock, reset, debug

• Creg: control registers
tdbg creg

router

switch dt

switch rq

switch rp

NoC: Formal Strategy
• Starting from the high-level module, create a formal testbench for the entire design

• Develop relevant properties such as guaranteed data delivery and forward progress checking

• Verify as many formal properties as possible at this level

• Move to the next step if undetermined properties remain

• Identifying the complex blocks by analyzing the bounded properties
• Blocks causing undetermined results (e.g., routers in the NOC).

• Modules with high complexity (e.g., fifos, arbiters, and data paths in routers).

• Turing the identified complex blocks into abstract models
• Replace the RTL implementations with simpler models or assumptions.

• Use proven assertions from the lower level to create assumptions for the boundary boxes.

node

NoC: Node Formal Testbench
• Formal testbench

• Abstract model
• Switch dt, rq, rp

tdbg creg

router

switch dt

switch rq

switch rp

Abstract model FV testbench

NoC: Node Formal test plan
Task Planning Implementation Closure

Block

Divide and conquer:
Use abstract models to re-
place switch units

Capture Interfaces:
Cache, memory interfaces
Bridge, IO, auxiliary interfaces
Switch interfaces

Total 1300+ constraints
simulation integrated

Function

Prioritize:
Node-to-node interfaces
Steering logic
Credit flow path
Data flow path

End-to-End Checking:
Credit checking:
Src to dst credit & valid
Data integrity checking:
packet transfer, parity, latency
Forward progress checking

Total 1700+ properties
80+ simulation-resistant
issues and bugs

Complexity

Decompose:
Design scaling
Testbench functionality
Helper/cover assertions

Abstraction Techniques:
Reset abstractions
Symbolic sets for data transfers

Formal Coverage:
Functional coverage
Assertion COI coverage
Required proof depth

7

switch

NoC: Switch Formal Testbench
• Formal testbench

• Switch
• control path

• abstract model: arbiters

• data path
• abstract model: fifos

ckg bist

data path

Abstract model FV testbench

control path
arb arb arb

fifo
fifo
fifo
fifo

fifo
fifo
fifo
fifo
fifo
fifo

NoC: abstraction strategies
• FIFOs: Symbolic depth between 1 and MAX_DEPTH, stable depth during formal

runs, full when size reaches depth, and cannot pop elements if size is 0.

• Credit Reduction: Ensure max_credit is within [1, MAX_CREDITS] for formal
verification, finding resource issues like starvation/deadlock around the last
available credit soon.

• Memories: Symbolic abstraction for reading/writing a single address location with
a minimum 1-cycle delay.

• Memories with Bypass: Data sent to RAM or directly read into output with 0 or
more cycle delay.

• RFC (8R/8W) Memories with Bypass: Multiple simultaneous reads/writes,
exclusive and exhaustive write address ranges, and bypass saves 1 cycle if read
address matches write addresses.

NoC: Switch Formal test plan
Task Planning Implementation Closure

Block
Divide and conquer:
Interfaces, data paths, and
control paths

Capture Interfaces:
Client inputs/outputs
Target inputs/outputs

Validate Constraints:
Simulation integrated

Function

Prioritize:
Design integrity, forward
progress, prioritization,
deadlock, and starvation

End-to-End Checkers:
Target arbitration
Data integrity (Wolper)
Forward progress checks

Issues found when stressed
under different traffic
distribution and arbitration
schemes

Complexity

Design scaling:
Reduce sizes of storage
elements, ports, bursts,
and transfer credits.

Abstraction Techniques:
Use symmetric elements and
symbolic variables on client and
target pairs

Formal Coverage:
Line: 100%
Condition: 100%

10

Ipshita Tripathi, Ankit Saxdna, et al., "Process & Proof for Formal Signoff - Live Case Study," DVCon 2016

NoC: Bug Examples

Waveform of fair round robin arbitration

Waveform of unfair round robin arbitration

• Steering logic issues
• There are many corner cases when packets

flow through different kinds of nodes.

• Connectivity issues
• incorrect wire connections
• stuck-at-signal connections
• data-loss connections
• timeout connections,

• Crediting issues
• Credit tracking, and end-to-end checkers
• to ensure that credits were not lost and

returned to the originating sources
correctly

NoC: Results
Nodes Interfaces Registers Logics Constraints RTL Asserts FV Checkers

ASN w/ Switch Full 412 19K 320K 952 1743 502

ASN w/ Switch AM 412 11K 282K 1372 527 732

ASN w/ Switch BBX 412 10K 241K 952 527 502

BSN w/ Switch Full 48 203K 751K 1150 3170 890

BSN w/ Switch AM 48 75K 661K 1360 790 890

BSN w/ Switch BBX 48 27K 419K 1150 790 890

CSN w/ Switch Full 120 69K 1890K 12108 9245 17464

CSN w/ Switch AM 120 42K 1080K 10878 4327 17464

CSN w/ Switch BBX 120 41K 1078K 9898 4327 17244

MSN w/ Switch Full 32 13K 271K 837 1565 590

MSN w/ Switch AM 32 10K 224K 1233 490 746

MSN w/ Switch BBX 32 10K 209K 837 490 590

Benefits of this approach
• Hierarchical Refinement

• Simplifies complex designs by focusing formal verification on critical blocks.
• Reduces undetermined properties step by step.

• Assume-Guarantee Efficiency
• Proven properties from higher levels reduce complexity for lower-level verification.
• Ensures logical consistency across abstraction levels.

• Focus on Problematic Blocks
• By iteratively targeting bounded properties, effort is concentrated on the most

complex or problem-atic areas.

• Verification of Data Integrity Across Levels
• Ensure data integrity and functional equivalence at each boundary:
• Cross-check inputs and outputs between boundary-boxed blocks
• Validate assumptions by verifying end-to-end integrity.

Q&A

	Slide 1: Hierarchical Formal Verification and Progress Checking of Network-On-Chip Design
	Slide 2: Agenda
	Slide 3: Network-on-chip (NoC)
	Slide 4: NoC: Node
	Slide 5: NoC: Formal Strategy
	Slide 6: NoC: Node Formal Testbench
	Slide 7: NoC: Node Formal test plan
	Slide 8: NoC: Switch Formal Testbench
	Slide 9: NoC: abstraction strategies
	Slide 10: NoC: Switch Formal test plan
	Slide 11: NoC: Bug Examples
	Slide 12: NoC: Results
	Slide 13: Benefits of this approach
	Slide 14: Q&A

