2025 DESIGN AND VERIFICATION THE DVC DDVC DDVC CONFERENCE AND EXHIBITION

#### UNITED STATES

SAN JOSE, CA, USA FEBRUARY 24-27, 2025

#### Hierarchical Formal Verification and Progress Checking of Network-On-Chip Design

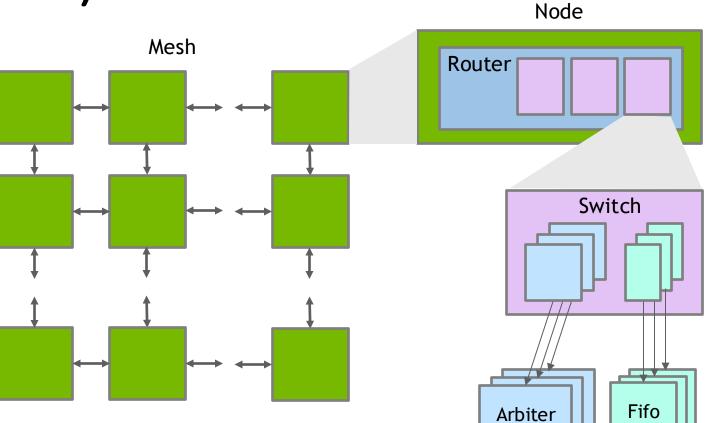
Pritam Roy, Ping Yeung, Joon Hong, Abhishek Desai, Aishwarya Raj,

Chirag Agarwal, Dhruvin Patel



NVIDIA Corp.

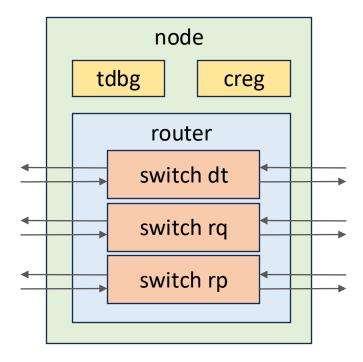



#### Agenda

- Network-on-chip (NoC)
- Formal Strategy
- Node Formal test plan
- Switch Formal test plan
- Abstraction strategies
- Bug Examples
- Results
- Benefits of this approach



## Network-on-chip (NoC)


- Mesh
- Node (16x to many)
- Router
- Switch (3x to 9x)
- Arbiter (many)
- Fifo (many)



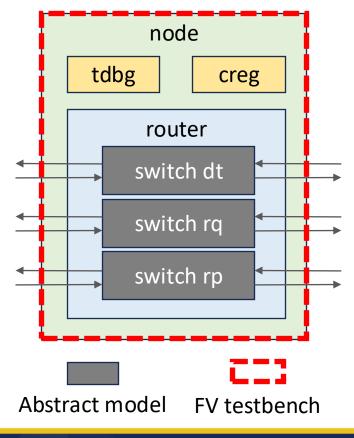


#### NoC: Node

- 4 Types: ASN, BSN, CSN, MSN
  - Tdbg: test, clock, reset, debug
  - Creg: control registers






### **NoC: Formal Strategy**

- Starting from the high-level module, create a formal testbench for the entire design
  - Develop relevant properties such as guaranteed data delivery and forward progress checking
  - Verify as many formal properties as possible at this level
  - Move to the next step if undetermined properties remain
- Identifying the complex blocks by analyzing the bounded properties
  - Blocks causing undetermined results (e.g., routers in the NOC).
  - Modules with high complexity (e.g., fifos, arbiters, and data paths in routers).
- Turing the identified complex blocks into abstract models
  - Replace the RTL implementations with simpler models or assumptions.
  - Use proven assertions from the lower level to create assumptions for the boundary boxes.



#### NoC: Node Formal Testbench

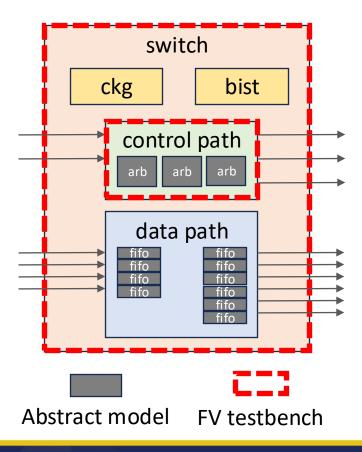
- Formal testbench
- Abstract model
  - Switch dt, rq, rp







#### NoC: Node Formal test plan


| Task       | Planning                                                                                       | Implementation                                                                                                                                                     | Closure                                                                                   |  |
|------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Block      | Divide and conquer:<br>Use abstract models to re-<br>place switch units                        | Capture Interfaces:<br>Cache, memory interfaces<br>Bridge, IO, auxiliary interfaces<br>Switch interfaces                                                           | Total 1300+ constraints simulation integrated                                             |  |
| Function   | Prioritize:<br>Node-to-node interfaces<br>Steering logic<br>Credit flow path<br>Data flow path | End-to-End Checking:<br>Credit checking:<br>Src to dst credit & valid<br>Data integrity checking:<br>packet transfer, parity, latency<br>Forward progress checking | Total 1700+ properties<br>80+ simulation-resistant<br>issues and bugs                     |  |
| Complexity | Decompose:<br>Design scaling<br>Testbench functionality<br>Helper/cover assertions             | Abstraction Techniques:<br>Reset abstractions<br>Symbolic sets for data transfers                                                                                  | Formal Coverage:<br>Functional coverage<br>Assertion COI coverage<br>Required proof depth |  |





#### NoC: Switch Formal Testbench

- Formal testbench
- Switch
  - control path
    - abstract model: arbiters
  - data path
    - abstract model: fifos







#### NoC: abstraction strategies

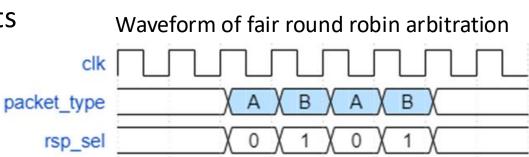
- FIFOs: Symbolic depth between 1 and MAX\_DEPTH, stable depth during formal runs, full when size reaches depth, and cannot pop elements if size is 0.
- Credit Reduction: Ensure max\_credit is within [1, MAX\_CREDITS] for formal verification, finding resource issues like starvation/deadlock around the last available credit soon.
- Memories: Symbolic abstraction for reading/writing a single address location with a minimum 1-cycle delay.
- Memories with Bypass: Data sent to RAM or directly read into output with 0 or more cycle delay.
- RFC (8R/8W) Memories with Bypass: Multiple simultaneous reads/writes, exclusive and exhaustive write address ranges, and bypass saves 1 cycle if read address matches write addresses.



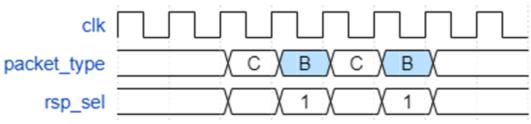


#### NoC: Switch Formal test plan

| Task       | Planning                                                                                          | Implementation                                                                                            | Closure                                                                                          |  |
|------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Block      | Divide and conquer:<br>Interfaces, data paths, and<br>control paths                               | Capture Interfaces:<br>Client inputs/outputs<br>Target inputs/outputs                                     | Validate Constraints:<br>Simulation integrated                                                   |  |
| Function   | Prioritize:<br>Design integrity, forward<br>progress, prioritization,<br>deadlock, and starvation | End-to-End Checkers:<br>Target arbitration<br>Data integrity (Wolper)<br>Forward progress checks          | Issues found when stressed<br>under different traffic<br>distribution and arbitration<br>schemes |  |
| Complexity | Design scaling:<br>Reduce sizes of storage<br>elements, ports, bursts,<br>and transfer credits.   | Abstraction Techniques:<br>Use symmetric elements and<br>symbolic variables on client and<br>target pairs | Formal Coverage:<br>Line: 100%<br>Condition: 100%                                                |  |


Ipshita Tripathi, Ankit Saxdna, et al., "Process & Proof for Formal Signoff - Live Case Study," DVCon 2016






### NoC: Bug Examples

- Steering logic issues
  - There are many corner cases when packets flow through different kinds of nodes.
- Connectivity issues
  - incorrect wire connections
  - stuck-at-signal connections
  - data-loss connections
  - timeout connections,
- Crediting issues
  - Credit tracking, and end-to-end checkers
  - to ensure that credits were not lost and returned to the originating sources correctly



Waveform of unfair round robin arbitration







#### NoC: Results

| Nodes              | Interfaces | Registers | Logics | Constraints | <b>RTL Asserts</b> | FV Checkers |
|--------------------|------------|-----------|--------|-------------|--------------------|-------------|
| ASN w/ Switch Full | 412        | 19K       | 320K   | 952         | 1743               | 502         |
| ASN w/ Switch AM   | 412        | 11K       | 282K   | 1372        | 527                | 732         |
| ASN w/ Switch BBX  | 412        | 10K       | 241K   | 952         | 527                | 502         |
| BSN w/ Switch Full | 48         | 203K      | 751K   | 1150        | 3170               | 890         |
| BSN w/ Switch AM   | 48         | 75K       | 661K   | 1360        | 790                | 890         |
| BSN w/ Switch BBX  | 48         | 27K       | 419K   | 1150        | 790                | 890         |
| CSN w/ Switch Full | 120        | 69K       | 1890K  | 12108       | 9245               | 17464       |
| CSN w/ Switch AM   | 120        | 42K       | 1080K  | 10878       | 4327               | 17464       |
| CSN w/ Switch BBX  | 120        | 41K       | 1078K  | 9898        | 4327               | 17244       |
| MSN w/ Switch Full | 32         | 13K       | 271K   | 837         | 1565               | 590         |
| MSN w/ Switch AM   | 32         | 10K       | 224K   | 1233        | 490                | 746         |
| MSN w/ Switch BBX  | 32         | 10K       | 209K   | 837         | 490                | 590         |





### Benefits of this approach

- Hierarchical Refinement
  - Simplifies complex designs by focusing formal verification on critical blocks.
  - Reduces undetermined properties step by step.
- Assume-Guarantee Efficiency
  - Proven properties from higher levels reduce complexity for lower-level verification.
  - Ensures logical consistency across abstraction levels.
- Focus on Problematic Blocks
  - By iteratively targeting bounded properties, effort is concentrated on the most complex or problem-atic areas.
- Verification of Data Integrity Across Levels
  - Ensure data integrity and functional equivalence at each boundary:
  - Cross-check inputs and outputs between boundary-boxed blocks
  - Validate assumptions by verifying end-to-end integrity.





#### UNITED STATES

SAN JOSE, CA, USA FEBRUARY 24-27, 2025

# Q&A

