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Abstract - The adoption of formal verification has increased steadily thanks to the widespread adoption of formal ap-

plications, assertion-based verification, and end-to-end formal model checking. However, to sign off a design with formal 
model checking, we must advance formal verification beyond focusing on a handful of localized functionalities and thor-
oughly verify the behavior of the whole design with all the units within it. We need a comprehensive approach to conquer 

the complexity of a Network-on-chip (NOC) design. This paper presents a hierarchical formal verification methodology 
using a divide-and-conquer approach with abstraction at multiple levels. We will share our usage of abstract models, for-
mal results, and the formal signoff process. 

I. INTRODUCTION 

Many companies have used formal verification to verify complex SOCs [1] and safety-critical designs [2]. It has also 

been used for assurance [2], bug hunting [3], and coverage closure. This paper presents the challenges of verifying a 

Network-on-chip (NOC) design and the solutions. The NOC layer consists of multiple switches arranged in an N x M 

mesh network pattern. Its primary purpose is efficiently transferring data and controlling signals between various sub-

systems, such as the cache sub-system, the memory sub-system, the CPU cores, and other network nodes. Each packet 

in the network has a source and destination, identified by X and Y coordinates for the mesh nodes and a port identifier 

for each type of node. 

 

To ensure smooth data transfer, designers must prevent packets from getting lost due to starvation and deadlock. High-

priority packets, like those between the CPU cores and the cache sub-system, travel through high-speed networks, 

while lower-priority packets use low-speed networks. The request, response, and data follow separate virtual channels 

(VCs). 

A. Challenges 

Due to the design's complexity and the capacity of formal tools, formal verification of deadlock and end-to-end checks 

is difficult. The complexity of mesh-level networks requires a divide-and-conquer approach, using assumed guarantee 

techniques to verify lower-level components with assertions and boundary boxes for the RTL. 

B. Solution 

To successfully replace block-level simulation with formal signoff, we introduce formal verification early in the design 

cycle, plan for formal-oriented design partitioning, and deploy formal checking with seasoned engineering resources. 

The end-to-end formal checking methodology [6] was introduced to establish a process for delivering design blocks 

signed off with formal verification. As project teams build confidence with formal verification of the design blocks, 

we leverage the design blocks to enable formal verification at a higher level as designers focus more on higher-level 

designs and tradeoffs. The goal is to verify the interfaces and interactions among design blocks.  

 

Section II discusses the backgrounds of NoC design, the basics of formal verification, and the important properties 

needed for the signoff of NoC designs. Section III outlines the hierarchical formal verification framework. Sections 

IV and V discuss the details of the abstractions made for efficient verification of the switch node and router, respec-

tively. Section VI discusses the recipe for the hierarchical formal verification process. Sections VII-VIII provide de-

tailed results and describe a few example bugs found using the framework. 

 



II. BACKGROUNDS 

A. Network-on-chip (NoC) 

 

Network-on-chip (NoC) is a common structure for moving data within a complex SoC design. NoC can oversee the 

communication of hundreds of cores and allow several concurrent transactions. Task allocation and scheduling are 

essential challenges in NoC designs, affecting application performance, latency, and power consumption. 

Figure 1: A representation of a network-on-chip Mesh, Nodes, and Switches, the key components of a NoC design. 

As depicted in Figure 1, the NoC design consists of a mesh of nodes, each node consisting of several switches, each 

switch consisting of control and data paths created with multiple arbiters, FIFOs, and RAMs. As the design is well-

structured hierarchically, we can leverage the design partitions and parameterized modules to verify the functional 

units with hierarchical formal verification. 

B. Formal Properties for NoC Designs 

In a network-on-chip (NoC), credits are used to track available buffer/FIFO space. A credit leak might occur if the 

system fails to reclaim credits after data is processed, leading to the assumption that the buffer is full when it isn't. 

 

Forward progress checks such as starvation and deadlock are critical issues in network-on-chip (NOC) designs and 

addressing them is essential to ensure efficient and reliable data transfer.  

o Deadlock: Deadlock occurs when no clients can make forward progress because they are waiting for each 

other to release resources. This can lead to a complete halt in the system. 

o Starvation: Starvation occurs when a client cannot make forward progress while other clients can. This can 

happen due to resource contention, where a high-priority client continuously preempts resources, leaving 

lower-priority clients starved. 

 

The following end-to-end checkers are also verified in addition to the forward progress checks. 

o In-order Checkers: Ensure packets follow the order from the same source to the same destination, 

considering bypass paths and floor-sweeping. 

o Data Consistency: Maintain data consistency throughout the network. 

III. OUTLINE OF HIERARCHICAL FORMAL VERIFICATION  

To improve formal efficacy, we work with the design team early in the project to scale down the design from top to 

bottom. At the top level, we define a representative mesh with much smaller dimensions. At the node level, we reduce 

the number of ports and the number of credits. At the switch level, we reduce the number of ports, the number of 

credits, and the burst transfer sizes. 

 

We leverage the NoC structure to verify it hierarchically using the following divide-and-conquer process. Usually, a 

bottom-up or top-down process can be used. However, a bottom-up or top-down process will introduce too much 

dependency on the project schedule, leading to constraints and delays. We aim to have multiple teams concurrently 

verify the units at each of the following levels. 

o Formal verification of the Mesh 

o Formal verification of the Node 

o Formal verification of the Switch 



 

Figure 2 comprehensively lists the properties at the various hierarchy levels—NoC Mesh, Node, Switches, and various 

control and data path levels. 

 

Level Design High-level properties Implementation 

Architec-

tural 

NoC Mesh  congestions, perfor-

mance, forward pro-

gress 

The super-units in the sub-system are replaced with abstract 

models to improve formal efficacy. 

Super Unit NoC Node 

 

request-responses, cred-

iting, data transfers, for-

ward progress 

The units in the super-unit are replaced with abstract models 

to improve formal efficacy. 

Unit NoC Switches 

[1]  

crediting, data integrity,  

fairness, starvation 

The original RTL is used to verify the high-level properties. 

Various abstraction techniques are used to simplify the de-

sign for formal efficacy. 

Sub-unit Control and 

Data paths 

functionality The original RTL is used to verify all the functionalities of 

the sub-units.  
Figure 2: Network-on-chip Mesh, Nodes, and Switches. 

To verify a NoC node, the switches within are replaced with abstract models to verify the high-level properties, such 

as request responses, crediting, data transfers, and forward progress. Then, to verify a switch, several well-understood 

abstraction techniques are used [1] for formal efficacy. 

IV. FORMAL VERIFICATION OF THE NODE 

C. Formal test plan 

The formal test plan of the NoC node describes the following end-to-end checking: 

o Credit checking includes valid credit, max credit, steering, etc. The source and corresponding destination 

credit & valid signals are matched and checked to ensure no loss of credit & valid transmissions. 

o Data integrity checking focuses on valid payload, payload integrity, and data consistency, as well as the 

steering, ordering, and bypass routing of packets among the nodes in the mesh. Within each node, the end-

to-end checks ensure each packet's path from the source to the destination follows the predefined rules.  

o Forward progress checking. That is to ensure packets moving from ingress to egress are subjected to deadlock 

and starvation. 

 

Task Planning Implementation Closure 

Block 

Divide and conquer: 

Use abstract models to re-

place switch units 

Capture Interfaces: 

Cache, memory interfaces 

Bridge, IO, auxiliary interfaces 

Switch interfaces  

Total 1300+ constraints 

simulation integrated 

Function 

Prioritize: 

Node-to-node interfaces 

Steering logic 

Credit flow path 

Data flow path 

End-to-End Checking: 

Credit checking: 

   Src to dst credit & valid 

Data integrity checking: 

   packet transfer, parity, latency 

Forward progress checking 

Total 1700+ properties 

80+ simulation-resistant issues 

and bugs 

Complexity 

Decompose:  

Design scaling 

Testbench functionality 

Helper/cover assertions  

Abstraction Techniques: 

Reset abstractions 

Symbolic sets for data transfers 

Formal Coverage: 

Functional coverage 

Assertion COI coverage 

Required proof depth  
Figure 3: Summary of Formal Checking Methodology for the NOC Nodes 



D. Hierarchical formal testbench 

Several types of nodes have different configurations, interfaces, functionality, and complexity. They are named ASN 

(Auxiliary Switch Node), BSN (Bridge Switch Node), CSN (Cache Switch Node), and MSN (Memory Switch Node). 

Although similar, we decided to build dedicated testbenches for them as the interfaces differ. It enables us to optimize 

performance later; as the design changes, it also turns out to be less work to update them individually. The formal 

testbenches are configured to manage the various nodes with their corresponding functionality and constraints. Each 

node consists of multiple switches, which are complex elements, especially with many ports and credits. To enable 

formal to focus on the node's functionality, we have created and replaced the switches with a configurable abstract 

model.  

 

E. The abstract model of a Switch in a Node 

Each switch determines the next direction for a packet (north, east, west, south, or terminal ports) based on the desti-

nation ID. Each switch has two main parts: 

o Steering logic: Determines the next travel direction for a packet. 

o Routing logic: Efficiently routes the packet to the selected destination using switch-based routers. 

 

 

module FV_router_model #( 

     parameter NUM_SRC = 3 

   , parameter NUM_DST = 1 

   , parameter PD_WIDTH = 100  

   , parameter integer PER_SRC_CREDIT_MAX[NUM_SRC-1:0] = {4, 4, 4 } 

   ,parameter integer PER_DST_CREDIT_MAX[NUM_DST-1:0] = {4, 4, 4 } 

) ( 

     input fv_clk 

   , input fv_reset_ 

   , input [NUM_SRC-1:0] fv_ingress_vld 

   , input [NUM_SRC-1:0] fv_ingress_req_adv 

   , input [NUM_SRC-1:0][PD_WIDTH-1:0] fv_ingress_pd 

   , input [NUM_SRC-1:0] fv_src_credit 

   , input [NUM_SRC-1:0][3:0] fv_src2dst 

   , input [NUM_DST-1:0] fv_egress_vld 

   , input [NUM_DST-1:0] fv_egress_adv 

   , input [NUM_DST-1:0][PD_WIDTH-1:0] fv_egress_pd 

   , input [NUM_DST-1:0] fv_dst_credit 

   , input [NUM_DST-1:0][3:0] fv_dst2src 

); 

 

Figure 4: The abstract model of a switch 

F. Network Router Abstraction 

Each switch inside the ASN, BSN, CSN, and MSN nodes is replaced with a well-defined abstract model. The inter-

face contains the following components. 

o Inputs: Ingress valids, source side credits, source side destination, source advancement, source data. 

o Outputs: Egress valids, destination side sources, destination advancement, destination data. 

o Constraints/Assumptions: Source side valid credit relation, source side valid vs destination side valid rela-

tion, credit valid properties for flow control and resource management. 

 

Figure 4 shows the interface for the abstract model. We can divide the interface input/output and behavioral constraints 

into 3 parts. 1. Credit-valid handshake behavior (no overflow/underflow in the valid input and credit return) 2. Ingress 

valid vs egress valid behavior (network requests are getting granted and egressing the correct output based on steering 

hints src2dst) 3. Data consistency of the router (no duplication/corruption/dropping) in the data path.  

  



generate 

  for (genvar i=0; i<NUM_SRC; i++) begin: per_src 

    for (genvar j=0; j<NUM_DST; j++) begin: per_dst 

 

      wire fv_incoming_valid. 

      wire fv_outgoing_valid; 

 

      assign fv_incoming_valid = (fv_src2dst[i] == j) && fv_ingress_vld[i]; 

      assign fv_outgoing_valid =  fv_egress_vld[j] && (fv_dst2src[j] == i); 

      assign fv_token_count_model_nxt = fv_token_count_model+fv_incoming_valid-fv_outgoing_valid; 

      `FFER(fv_token_count_model, fv_token_count_model_nxt, fv_clk, 1'b1, fv_reset_, 0) 

 

      asum_FV_router_model_no_outgoing_valid: 
         assert property (@(posedge fv_clk)  

   fv_outgoing_valid |-> |fv_token_count_model); 
                                    

      asum_FV_router_model_no_overflow : 
         assert property (@(posedge fv_clk)  

   fv_token_count_model_nxt <= PER_SRC_CREDIT_MAX[i]); 
 
      asum_FV_router_model_no_underflow : 
         assert property (@(posedge fv_clk)  

           fv_token_count_model + fv_incoming_valid >= fv_outgoing_valid); 

 

      asum_FV_router_model_fwd_progress_liveness: 
         assert property (@(posedge fv_clk)  

           (fv_token_count_model != 0) |-> ##[0:$] (fv_outgoing_valid && !fv_incoming_valid)); 

      

      data_consitency_vip #(.max_outstanding(PER_SRC_CREDIT_MAX[i]), .id_width(PD_WIDTH))        

         asum_FV_router_model_inorder_checker  

           (fv_clk, fv_reset_, 

               fv_incoming_valid, fv_ingress_pd[i], fv_outgoing_valid, fv_egress_pd[j]); 

    end 

  end 

 

Figure 5: Code snippet for control and data checks for abstract model 

G. How to validate the abstract model   

In this project, we validated the constraints in the model in two ways.  

 

o The constraints are added in the top-level simulation (not only switch level or mesh level). The assumptions 

in the simulation are treated as assertions and evaluated with existing dynamic simulation test suites/regres-

sions.  

o Also, we use lower-level and top-level testbenches (with original RTL) where the formal tools apply the 

properties as assertions. (in their default format, i.e., assertion)  

 

These two methods are beneficial and help us correct the constraints. Initially, there were a few failures due to wrong 

constraints; we fixed the constraints. We found various issues in both processes. Simulation-based processes found 

falsifications in the first few iterations but could not prove them. The formal process could prove them, but it could 

be bounded as the model's router logic is still present. These two can help in complementary ways.    

 

The beauty of hierarchical assume-guarantee reasoning helps us use the constraints at the top level. Only in the top-

level testbenches, when routers are boundary-boxed, does name-based matching create the assumptions from asser-

tions.  

 
assume -from_assert  {^.*asum_FV_router_model.*((:assert)?(:assume:assert)*)?$} -regexp  

  



V. FORMAL VERIFICATION OF THE SWITCH 

A. Formal test plan 

The formal test plan of the switch focuses on verifying design integrity, forward progress, prioritization, deadlock, 

and starvation. One crucial decision is to partition the design into interfaces, data paths, and control paths early in the 

design process. It enables the effective deployment of different “design for formal verification” techniques. For the 

interfaces, we unified a switch interface that can be used for all the switch instances in the design. It is a success as it 

allows design, simulation, and formal verification to be performed concurrently at different hierarchical levels.  

 

Task Planning Implementation Closure 

Block 

Divide and conquer: 

Interfaces, data paths, 

and control paths 

Capture Interfaces: 

Client inputs/outputs 

Target inputs/outputs 

Validate Constraints: 

Simulation integrated 

Function 

Prioritize: 

Design integrity, forward 

progress, prioritization, 

deadlock, and starvation 

End-to-End Checkers:  

Target arbitration 

Data integrity (Wolper) 

Forward progress checks 

Issues found when 

stressed under different 

traffic distribution and 

arbitration schemes 

Complexity 

Design scaling: 

Reduce sizes of storage 

elements, ports, bursts, 

and transfer credits. 

Abstraction Techniques: 

Use symmetric elements and 

symbolic variables on client 

and target pairs 

 

Formal Coverage: 

Line: 100% 

Condition: 100% 

Figure 6: Summary of Formal Checking Methodology for parameterized NoC Switches 

B. Hierarchical formal testbench 

As many switches have different configurations, the formal testbench must be highly parameterized and configurable. 

We start with a library of unique checkers supporting distinctive features in different switch configurations. Then, the 

corresponding checkers are deployed based on the features used for the data path and control logic. The checkers are 

instantiated parametrically in the formal testbenches for the different sub-modules below: 

o Interface checkers: source-ingress, data path interface, control logic interface, egress-destination, etc. 

o Datapath checkers: data integrity, burst handling, clock gating, several types of storage elements, etc. 

o Control logic checkers: prioritization, credit handling, several arbitration schemes, etc. 

 

Finally, the switch's top-level formal testbench will instantiate the interface, data path, and control logic testbench. 

C. The abstractions applied in the work. 

Firstly, we can scale down the data widths and burst buffer sizes for the data path while reducing the number of ports 

and transfer credits for the control logic. Since FIFOs and arbiters are common design elements in the switches, well-

defined abstraction techniques [1][7], such as symbolic FIFO depth abstraction, memory abstraction, data coloring, 

etc., are adopted extensively. In addition, most end-to-end checkers are implemented for the symbolic client and target 

pair. As formal will examine all possible values of the symbolic variable to ensure none of the checkers show failure, 

all client and target pairs will be verified [1].  

D. Deadlock and starvation. 

We have efficiently partitioned the switch based on functionality and used case splitting to decompose it into multiple 

formal runs. Each run focuses on a particular configuration with a few concerned cases, reducing the cone-of-influence 

(COI) and potential state space. For the control logic, we focus extensively on deadlock and starvation verification. 

Various forward progress and credit tracking checkers have been developed to ensure the switch is free of deadlock 

and starvation. 

  



VI. GENERAL STRATEGY  

A. Hierarchical assume-guarantee  

We have established a verification process for a top-down formal verification approach, incorporating hierarchical 

abstraction and refinement. These steps use hierarchical assume-guarantee reasoning and abstract models to focus 

verification on complex components.  

• Starting from the high-level model, create a formal testbench for the entire design (the NOC model at the 

system level), including relevant properties such as guaranteed data delivery and forward progress checking 

(deadlock and starvation freedom). 

o Verify all formal properties (assertions) at this level: 

o If all properties are proven or falsified, verification is complete.  

o if undetermined properties remain, move to the next step. 

• Identifying the complex blocks by analyzing the bounded properties at the top level. 

o Blocks causing undetermined results (e.g., routers in the NOC). 

o Modules with high complexity (e.g., fifos, arbiters, and data paths in routers). 

• Turing the identified complex blocks into boundary boxes and creating abstract models. 

o Replace their detailed RTL implementations with simpler models or assumptions. 

o Use proven assertions from the lower level to create assumptions for the boundary boxes. 

o The abstract model can use a small set of properties/invariants from the boundary-boxed module, e.g., fifos 

should never overflow, and arbiters should grant requests within bounded cycles. 

o Create assumptions based on validated data flow, latency, or grant behaviors. 

o Validate assumptions at the lower level as assertions or in the full simulation at the top level. 

o The abstract model is often written to cover a superset of functionalities than the original RTL, e.g., the 

arbiter abstract model will grant with any latency. 

o Once a block is fully verified, its abstract model can be used at a higher level  

o The verification is completed once the properties are proven or falsifications are validated on the original 

RTL. Otherwise, continue to debug the false failure and refine the abstract model by adding constraints 

around the behavior of the boundary-boxed module. 

B. Benefits of this approach 

• Hierarchical Refinement: 

o Simplifies complex designs by focusing formal verification on critical blocks. 

o Reduces undetermined properties step by step. 

• Assume-Guarantee Efficiency: 

o Proven properties from higher levels reduce complexity for lower-level verification. 

o Ensures logical consistency across abstraction levels. 

• Focus on Problematic Blocks: 

o By iteratively targeting bounded properties, effort is concentrated on the most complex or problem-

atic areas. 

• Verification of Data Integrity Across Levels 

o Ensure data integrity and functional equivalence at each boundary: 

o Cross-check inputs and outputs between boundary-boxed blocks and original RTL. 

o Validate assumptions by verifying end-to-end integrity. 

C. The abstractions applied 

A few more abstraction strategies[6] are also used in the hierarchical verification process to combat the complexity. 

o FIFOs: Symbolic depth between 1 and MAX_DEPTH, stable depth during formal runs, full when size reaches 

depth, and cannot pop elements if size is 0. 

o Credit Reduction: Ensure max_credit is within [1, MAX_CREDITS] for formal verification, finding resource 

issues like starvation/deadlock around the last available credit soon. 

o Memories: Symbolic abstraction for reading/writing a single address location with a minimum 1-cycle delay. 

o Memories with Bypass: Data sent to RAM or directly read into output with 0 or more cycle delay. 

o RFC (8R/8W) Memories with Bypass: Multiple simultaneous reads/writes, exclusive and exhaustive write 

address ranges, and bypass saves 1 cycle if read address matches write addresses. 



VII. BUG EXAMPLES 

A. Issues with steering logic 

Several issues were found related to steering logic between several types of nodes. Traffic flows smoothly when it 

passes through the same kind of node, but there are many corner cases when packets flow through various kinds of 

nodes.  

 

The first issue shown involved the BSN response channel configuration. The BSN includes one response channel 

input and two response channel outputs. The intended design was to distribute response packets from the input to the 

two output channels evenly. However, due to an issue in the arbitration, all response packets were consistently di-

rected to only one of the output channels. 

 

The second issue was also observed in the arbitration process, though it was more complex since the arbitration ap-

pears to operate fairly under typical conditions. 

 

 
Figure 7: Waveform of fair round robin arbitration 

 

As shown in Figure 7, response channels 0 and 1 are selected evenly when packet types A and B are transmitted 

from the BSN. However, when an additional packet type, C, is introduced with a target destination different from A 

and B, the BSN directs all type B packets through response channel 1, leaving response channel 0 unused, as shown 

in Figure 8. 

 

 
Figure 8: Waveform of unfair round robin arbitration 

B. Connectivity issues 

The NoC consists of many interconnected units. Multiple connectivity issues were found. They can be classified into 

these kinds: incorrect wire connections, stuck-at-signal connections, data-loss connections, timeout connections, etc. 

Hence, besides verifying the functionality inside each unit, we can take a higher-level point of view to ensure each 

packet progresses correctly from connection to connection. 

 

C. Crediting issues 

The availability of credits governs the flow of packets in the NoC. We must ensure that the credits in each unit are 

instated, consumed, retained, and returned correctly. Credit tracking and end-to-end checkers were implemented to 

ensure that credits were not lost and returned to the originating sources correctly. These credit checks were valuable 

in building confidence and finding some simulation-resisted issues. 

  



VIII. RESULTS 

Figure 9 shows the complexity and results for ASN, BSN, CSN, and MBN nodes. Full means full RTL is used for 

the switch module, BBX means the RTL is not used for the switch module, and AM means the switch module is re-

placed by abstract models (AM). Figure 10 shows the complexity and results for the switch modules corresponding 

to the nodes. 

A. Formal Netlist Complexity of Node modules 

Nodes Interfaces Registers Logics Constraints RTL Asserts Formal Checkers 

ASN w/ Switch Full 412 19K 320K 952 1743 502 

ASN w/ Switch AM 412 11K 282K 1372 527 732 

ASN w/ Switch BBX 412 10K  241K 952 527 502 

BSN w/ Switch Full 48 203K 751K 1150 3170 890 

BSN w/ Switch AM 48 75K 661K 1360 790 890 

BSN w/ Switch BBX 48 27K 419K 1150 790 890 

CSN w/ Switch Full 120 69K  1890K 12108 9245 17464 

CSN w/ Switch AM 120 42K  1080K 10878 4327 17464 

CSN w/ Switch BBX 120 41K 1078K 9898 4327 17244 

MSN w/ Switch Full 32 13K 271K 837 1565 590 

MSN w/ Switch AM 32 10K 224K 1233 490 746 

MSN w/ Switch BBX 32 10K 209K 837 490 590 
Figure 9: Summary of formal netlist complexity and properties for the NoC nodes 

B. Formal Netlist Complexity of Switch modules 

Switches Interfaces  Counters Registers  Constraints  Asserts Covers 

ASN Switch dt 238 251 2613 98 1285 2834 

ASN Switch rq 203 187 1990 84 1006 2172 

ASN Switch rp 226 219 2293 85 1186 2570 

BSN Switch dt 253 304 2956 91 1287 2738 

BSN Switch rq 253 239 2581 94 1110 2342 

BSN Switch rp 371 662 6202 128 2427 5317 

CSN Switch fdt 327 541 4950 94 1911 4253 

CSN Switch frq 327 523 4949 94 1863 4141 

CSN Switch frp 327 523 4949 94 1863 4141 

CSN Switch sdt 323 438 4574 103 1711 3789 

CSN Switch srq 366 554 5752 117 2083 4666 

CSN Switch srp 346 493 5173 108 1895 4218 

MSN Switch dt 253 239 2549 94 1110 2342 

MSN Switch rq 162 139 1275 60 698 1425 

MSN Switch rp 162 139 1414 60 698 1425 
Figure 10: Summary of formal netlist complexity and properties for the NoC switches 

  



C. Checklist for Formal signoff 

The table in Figure 11 summarizes the targeted formal signoff goals. We are close to these targets but will update 

them when we have the final numbers.  

 

 ASN BSN CSN MSN  

Formal Completed      

Test plan completed 100% 100% 100% 100% Review completed 

Design size reduction Done Done Done Done Review completed 

Interface constraints implemented 100% 100% 100% 100% No failure in simulation 

Formal checkers implemented 100% 100% 100% 100%  

COI coverage met   90+%   90+%   90+%   90+% Formal coverage 

RTL asserted verified 100% 100% 100% 100% No violation 

Formal checkers verified  100% 100% 100% 100% No violation 

Formal Signoff      

Advanced abstraction techniques Done Done Done Done Described in [1][6] 

RPD target met   70+% 70+% 70+% 70+% Required Proof Depth 

Forward progress implemented 100% 100% 100% 100%  

Forward progress verified 100% 100% 100% 100% No violation 

Formal coverage met   90+%   90+%   90+%   90+% Formal coverage 
Figure 11: Summary of formal signoff process and requirements 

D. Future work 

Regarding formal coverage, the coverage data is currently measured at each level (mesh, node, switch) inde-

pendently and is not merged. We would explore that possibility with formal tool vendors in the future. 
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