
Hierarchical Formal Verification and Progress

Checking of Network-On-Chip Design

Pritam Roy[1], Ping Yeung[1], Joon Hong[1], Abhishek Desai[1], Aishwarya Raj[1],

Chirag Agarwal[2], Dhruvin Patel[2]

Nvidia Corp., [1]Santa Clara, USA, [2]Gurugram, India

Abstract - The adoption of formal verification has increased steadily thanks to the widespread adoption of formal ap-

plications, assertion-based verification, and end-to-end formal model checking. However, to sign off a design with formal
model checking, we must advance formal verification beyond focusing on a handful of localized functionalities and thor-
oughly verify the behavior of the whole design with all the units within it. We need a comprehensive approach to conquer

the complexity of a Network-on-chip (NOC) design. This paper presents a hierarchical formal verification methodology
using a divide-and-conquer approach with abstraction at multiple levels. We will share our usage of abstract models, for-
mal results, and the formal signoff process.

I. INTRODUCTION

Many companies have used formal verification to verify complex SOCs [1] and safety-critical designs [2]. It has also

been used for assurance [2], bug hunting [3], and coverage closure. This paper presents the challenges of verifying a

Network-on-chip (NOC) design and the solutions. The NOC layer consists of multiple switches arranged in an N x M

mesh network pattern. Its primary purpose is efficiently transferring data and controlling signals between various sub-

systems, such as the cache sub-system, the memory sub-system, the CPU cores, and other network nodes. Each packet

in the network has a source and destination, identified by X and Y coordinates for the mesh nodes and a port identifier

for each type of node.

To ensure smooth data transfer, designers must prevent packets from getting lost due to starvation and deadlock. High-

priority packets, like those between the CPU cores and the cache sub-system, travel through high-speed networks,

while lower-priority packets use low-speed networks. The request, response, and data follow separate virtual channels

(VCs).

A. Challenges

Due to the design's complexity and the capacity of formal tools, formal verification of deadlock and end-to-end checks

is difficult. The complexity of mesh-level networks requires a divide-and-conquer approach, using assumed guarantee

techniques to verify lower-level components with assertions and boundary boxes for the RTL.

B. Solution

To successfully replace block-level simulation with formal signoff, we introduce formal verification early in the design

cycle, plan for formal-oriented design partitioning, and deploy formal checking with seasoned engineering resources.

The end-to-end formal checking methodology [6] was introduced to establish a process for delivering design blocks

signed off with formal verification. As project teams build confidence with formal verification of the design blocks,

we leverage the design blocks to enable formal verification at a higher level as designers focus more on higher-level

designs and tradeoffs. The goal is to verify the interfaces and interactions among design blocks.

Section II discusses the backgrounds of NoC design, the basics of formal verification, and the important properties

needed for the signoff of NoC designs. Section III outlines the hierarchical formal verification framework. Sections

IV and V discuss the details of the abstractions made for efficient verification of the switch node and router, respec-

tively. Section VI discusses the recipe for the hierarchical formal verification process. Sections VII-VIII provide de-

tailed results and describe a few example bugs found using the framework.

II. BACKGROUNDS

A. Network-on-chip (NoC)

Network-on-chip (NoC) is a common structure for moving data within a complex SoC design. NoC can oversee the

communication of hundreds of cores and allow several concurrent transactions. Task allocation and scheduling are

essential challenges in NoC designs, affecting application performance, latency, and power consumption.

Figure 1: A representation of a network-on-chip Mesh, Nodes, and Switches, the key components of a NoC design.

As depicted in Figure 1, the NoC design consists of a mesh of nodes, each node consisting of several switches, each

switch consisting of control and data paths created with multiple arbiters, FIFOs, and RAMs. As the design is well-

structured hierarchically, we can leverage the design partitions and parameterized modules to verify the functional

units with hierarchical formal verification.

B. Formal Properties for NoC Designs

In a network-on-chip (NoC), credits are used to track available buffer/FIFO space. A credit leak might occur if the

system fails to reclaim credits after data is processed, leading to the assumption that the buffer is full when it isn't.

Forward progress checks such as starvation and deadlock are critical issues in network-on-chip (NOC) designs and

addressing them is essential to ensure efficient and reliable data transfer.

o Deadlock: Deadlock occurs when no clients can make forward progress because they are waiting for each

other to release resources. This can lead to a complete halt in the system.

o Starvation: Starvation occurs when a client cannot make forward progress while other clients can. This can

happen due to resource contention, where a high-priority client continuously preempts resources, leaving

lower-priority clients starved.

The following end-to-end checkers are also verified in addition to the forward progress checks.

o In-order Checkers: Ensure packets follow the order from the same source to the same destination,

considering bypass paths and floor-sweeping.

o Data Consistency: Maintain data consistency throughout the network.

III. OUTLINE OF HIERARCHICAL FORMAL VERIFICATION

To improve formal efficacy, we work with the design team early in the project to scale down the design from top to

bottom. At the top level, we define a representative mesh with much smaller dimensions. At the node level, we reduce

the number of ports and the number of credits. At the switch level, we reduce the number of ports, the number of

credits, and the burst transfer sizes.

We leverage the NoC structure to verify it hierarchically using the following divide-and-conquer process. Usually, a

bottom-up or top-down process can be used. However, a bottom-up or top-down process will introduce too much

dependency on the project schedule, leading to constraints and delays. We aim to have multiple teams concurrently

verify the units at each of the following levels.

o Formal verification of the Mesh

o Formal verification of the Node

o Formal verification of the Switch

Figure 2 comprehensively lists the properties at the various hierarchy levels—NoC Mesh, Node, Switches, and various

control and data path levels.

Level Design High-level properties Implementation

Architec-

tural

NoC Mesh congestions, perfor-

mance, forward pro-

gress

The super-units in the sub-system are replaced with abstract

models to improve formal efficacy.

Super Unit NoC Node

request-responses, cred-

iting, data transfers, for-

ward progress

The units in the super-unit are replaced with abstract models

to improve formal efficacy.

Unit NoC Switches

[1]

crediting, data integrity,

fairness, starvation

The original RTL is used to verify the high-level properties.

Various abstraction techniques are used to simplify the de-

sign for formal efficacy.

Sub-unit Control and

Data paths

functionality The original RTL is used to verify all the functionalities of

the sub-units.
Figure 2: Network-on-chip Mesh, Nodes, and Switches.

To verify a NoC node, the switches within are replaced with abstract models to verify the high-level properties, such

as request responses, crediting, data transfers, and forward progress. Then, to verify a switch, several well-understood

abstraction techniques are used [1] for formal efficacy.

IV. FORMAL VERIFICATION OF THE NODE

C. Formal test plan

The formal test plan of the NoC node describes the following end-to-end checking:

o Credit checking includes valid credit, max credit, steering, etc. The source and corresponding destination

credit & valid signals are matched and checked to ensure no loss of credit & valid transmissions.

o Data integrity checking focuses on valid payload, payload integrity, and data consistency, as well as the

steering, ordering, and bypass routing of packets among the nodes in the mesh. Within each node, the end-

to-end checks ensure each packet's path from the source to the destination follows the predefined rules.

o Forward progress checking. That is to ensure packets moving from ingress to egress are subjected to deadlock

and starvation.

Task Planning Implementation Closure

Block

Divide and conquer:

Use abstract models to re-

place switch units

Capture Interfaces:

Cache, memory interfaces

Bridge, IO, auxiliary interfaces

Switch interfaces

Total 1300+ constraints

simulation integrated

Function

Prioritize:

Node-to-node interfaces

Steering logic

Credit flow path

Data flow path

End-to-End Checking:

Credit checking:

 Src to dst credit & valid

Data integrity checking:

 packet transfer, parity, latency

Forward progress checking

Total 1700+ properties

80+ simulation-resistant issues

and bugs

Complexity

Decompose:

Design scaling

Testbench functionality

Helper/cover assertions

Abstraction Techniques:

Reset abstractions

Symbolic sets for data transfers

Formal Coverage:

Functional coverage

Assertion COI coverage

Required proof depth
Figure 3: Summary of Formal Checking Methodology for the NOC Nodes

D. Hierarchical formal testbench

Several types of nodes have different configurations, interfaces, functionality, and complexity. They are named ASN

(Auxiliary Switch Node), BSN (Bridge Switch Node), CSN (Cache Switch Node), and MSN (Memory Switch Node).

Although similar, we decided to build dedicated testbenches for them as the interfaces differ. It enables us to optimize

performance later; as the design changes, it also turns out to be less work to update them individually. The formal

testbenches are configured to manage the various nodes with their corresponding functionality and constraints. Each

node consists of multiple switches, which are complex elements, especially with many ports and credits. To enable

formal to focus on the node's functionality, we have created and replaced the switches with a configurable abstract

model.

E. The abstract model of a Switch in a Node

Each switch determines the next direction for a packet (north, east, west, south, or terminal ports) based on the desti-

nation ID. Each switch has two main parts:

o Steering logic: Determines the next travel direction for a packet.

o Routing logic: Efficiently routes the packet to the selected destination using switch-based routers.

module FV_router_model #(

 parameter NUM_SRC = 3

 , parameter NUM_DST = 1

 , parameter PD_WIDTH = 100

 , parameter integer PER_SRC_CREDIT_MAX[NUM_SRC-1:0] = {4, 4, 4 }

 ,parameter integer PER_DST_CREDIT_MAX[NUM_DST-1:0] = {4, 4, 4 }

) (

 input fv_clk

 , input fv_reset_

 , input [NUM_SRC-1:0] fv_ingress_vld

 , input [NUM_SRC-1:0] fv_ingress_req_adv

 , input [NUM_SRC-1:0][PD_WIDTH-1:0] fv_ingress_pd

 , input [NUM_SRC-1:0] fv_src_credit

 , input [NUM_SRC-1:0][3:0] fv_src2dst

 , input [NUM_DST-1:0] fv_egress_vld

 , input [NUM_DST-1:0] fv_egress_adv

 , input [NUM_DST-1:0][PD_WIDTH-1:0] fv_egress_pd

 , input [NUM_DST-1:0] fv_dst_credit

 , input [NUM_DST-1:0][3:0] fv_dst2src

);

Figure 4: The abstract model of a switch

F. Network Router Abstraction

Each switch inside the ASN, BSN, CSN, and MSN nodes is replaced with a well-defined abstract model. The inter-

face contains the following components.

o Inputs: Ingress valids, source side credits, source side destination, source advancement, source data.

o Outputs: Egress valids, destination side sources, destination advancement, destination data.

o Constraints/Assumptions: Source side valid credit relation, source side valid vs destination side valid rela-

tion, credit valid properties for flow control and resource management.

Figure 4 shows the interface for the abstract model. We can divide the interface input/output and behavioral constraints

into 3 parts. 1. Credit-valid handshake behavior (no overflow/underflow in the valid input and credit return) 2. Ingress

valid vs egress valid behavior (network requests are getting granted and egressing the correct output based on steering

hints src2dst) 3. Data consistency of the router (no duplication/corruption/dropping) in the data path.

generate

 for (genvar i=0; i<NUM_SRC; i++) begin: per_src

 for (genvar j=0; j<NUM_DST; j++) begin: per_dst

 wire fv_incoming_valid.

 wire fv_outgoing_valid;

 assign fv_incoming_valid = (fv_src2dst[i] == j) && fv_ingress_vld[i];

 assign fv_outgoing_valid = fv_egress_vld[j] && (fv_dst2src[j] == i);

 assign fv_token_count_model_nxt = fv_token_count_model+fv_incoming_valid-fv_outgoing_valid;

 `FFER(fv_token_count_model, fv_token_count_model_nxt, fv_clk, 1'b1, fv_reset_, 0)

 asum_FV_router_model_no_outgoing_valid:
 assert property (@(posedge fv_clk)

 fv_outgoing_valid |-> |fv_token_count_model);

 asum_FV_router_model_no_overflow :
 assert property (@(posedge fv_clk)

 fv_token_count_model_nxt <= PER_SRC_CREDIT_MAX[i]);

 asum_FV_router_model_no_underflow :
 assert property (@(posedge fv_clk)

 fv_token_count_model + fv_incoming_valid >= fv_outgoing_valid);

 asum_FV_router_model_fwd_progress_liveness:
 assert property (@(posedge fv_clk)

 (fv_token_count_model != 0) |-> ##[0:$] (fv_outgoing_valid && !fv_incoming_valid));

 data_consitency_vip #(.max_outstanding(PER_SRC_CREDIT_MAX[i]), .id_width(PD_WIDTH))

 asum_FV_router_model_inorder_checker

 (fv_clk, fv_reset_,

 fv_incoming_valid, fv_ingress_pd[i], fv_outgoing_valid, fv_egress_pd[j]);

 end

 end

Figure 5: Code snippet for control and data checks for abstract model

G. How to validate the abstract model

In this project, we validated the constraints in the model in two ways.

o The constraints are added in the top-level simulation (not only switch level or mesh level). The assumptions

in the simulation are treated as assertions and evaluated with existing dynamic simulation test suites/regres-

sions.

o Also, we use lower-level and top-level testbenches (with original RTL) where the formal tools apply the

properties as assertions. (in their default format, i.e., assertion)

These two methods are beneficial and help us correct the constraints. Initially, there were a few failures due to wrong

constraints; we fixed the constraints. We found various issues in both processes. Simulation-based processes found

falsifications in the first few iterations but could not prove them. The formal process could prove them, but it could

be bounded as the model's router logic is still present. These two can help in complementary ways.

The beauty of hierarchical assume-guarantee reasoning helps us use the constraints at the top level. Only in the top-

level testbenches, when routers are boundary-boxed, does name-based matching create the assumptions from asser-

tions.

assume -from_assert {^.*asum_FV_router_model.*((:assert)?(:assume:assert)*)?$} -regexp

V. FORMAL VERIFICATION OF THE SWITCH

A. Formal test plan

The formal test plan of the switch focuses on verifying design integrity, forward progress, prioritization, deadlock,

and starvation. One crucial decision is to partition the design into interfaces, data paths, and control paths early in the

design process. It enables the effective deployment of different “design for formal verification” techniques. For the

interfaces, we unified a switch interface that can be used for all the switch instances in the design. It is a success as it

allows design, simulation, and formal verification to be performed concurrently at different hierarchical levels.

Task Planning Implementation Closure

Block

Divide and conquer:

Interfaces, data paths,

and control paths

Capture Interfaces:

Client inputs/outputs

Target inputs/outputs

Validate Constraints:

Simulation integrated

Function

Prioritize:

Design integrity, forward

progress, prioritization,

deadlock, and starvation

End-to-End Checkers:

Target arbitration

Data integrity (Wolper)

Forward progress checks

Issues found when

stressed under different

traffic distribution and

arbitration schemes

Complexity

Design scaling:

Reduce sizes of storage

elements, ports, bursts,

and transfer credits.

Abstraction Techniques:

Use symmetric elements and

symbolic variables on client

and target pairs

Formal Coverage:

Line: 100%

Condition: 100%

Figure 6: Summary of Formal Checking Methodology for parameterized NoC Switches

B. Hierarchical formal testbench

As many switches have different configurations, the formal testbench must be highly parameterized and configurable.

We start with a library of unique checkers supporting distinctive features in different switch configurations. Then, the

corresponding checkers are deployed based on the features used for the data path and control logic. The checkers are

instantiated parametrically in the formal testbenches for the different sub-modules below:

o Interface checkers: source-ingress, data path interface, control logic interface, egress-destination, etc.

o Datapath checkers: data integrity, burst handling, clock gating, several types of storage elements, etc.

o Control logic checkers: prioritization, credit handling, several arbitration schemes, etc.

Finally, the switch's top-level formal testbench will instantiate the interface, data path, and control logic testbench.

C. The abstractions applied in the work.

Firstly, we can scale down the data widths and burst buffer sizes for the data path while reducing the number of ports

and transfer credits for the control logic. Since FIFOs and arbiters are common design elements in the switches, well-

defined abstraction techniques [1][7], such as symbolic FIFO depth abstraction, memory abstraction, data coloring,

etc., are adopted extensively. In addition, most end-to-end checkers are implemented for the symbolic client and target

pair. As formal will examine all possible values of the symbolic variable to ensure none of the checkers show failure,

all client and target pairs will be verified [1].

D. Deadlock and starvation.

We have efficiently partitioned the switch based on functionality and used case splitting to decompose it into multiple

formal runs. Each run focuses on a particular configuration with a few concerned cases, reducing the cone-of-influence

(COI) and potential state space. For the control logic, we focus extensively on deadlock and starvation verification.

Various forward progress and credit tracking checkers have been developed to ensure the switch is free of deadlock

and starvation.

VI. GENERAL STRATEGY

A. Hierarchical assume-guarantee

We have established a verification process for a top-down formal verification approach, incorporating hierarchical

abstraction and refinement. These steps use hierarchical assume-guarantee reasoning and abstract models to focus

verification on complex components.

• Starting from the high-level model, create a formal testbench for the entire design (the NOC model at the

system level), including relevant properties such as guaranteed data delivery and forward progress checking

(deadlock and starvation freedom).

o Verify all formal properties (assertions) at this level:

o If all properties are proven or falsified, verification is complete.

o if undetermined properties remain, move to the next step.

• Identifying the complex blocks by analyzing the bounded properties at the top level.

o Blocks causing undetermined results (e.g., routers in the NOC).

o Modules with high complexity (e.g., fifos, arbiters, and data paths in routers).

• Turing the identified complex blocks into boundary boxes and creating abstract models.

o Replace their detailed RTL implementations with simpler models or assumptions.

o Use proven assertions from the lower level to create assumptions for the boundary boxes.

o The abstract model can use a small set of properties/invariants from the boundary-boxed module, e.g., fifos

should never overflow, and arbiters should grant requests within bounded cycles.

o Create assumptions based on validated data flow, latency, or grant behaviors.

o Validate assumptions at the lower level as assertions or in the full simulation at the top level.

o The abstract model is often written to cover a superset of functionalities than the original RTL, e.g., the

arbiter abstract model will grant with any latency.

o Once a block is fully verified, its abstract model can be used at a higher level

o The verification is completed once the properties are proven or falsifications are validated on the original

RTL. Otherwise, continue to debug the false failure and refine the abstract model by adding constraints

around the behavior of the boundary-boxed module.

B. Benefits of this approach

• Hierarchical Refinement:

o Simplifies complex designs by focusing formal verification on critical blocks.

o Reduces undetermined properties step by step.

• Assume-Guarantee Efficiency:

o Proven properties from higher levels reduce complexity for lower-level verification.

o Ensures logical consistency across abstraction levels.

• Focus on Problematic Blocks:

o By iteratively targeting bounded properties, effort is concentrated on the most complex or problem-

atic areas.

• Verification of Data Integrity Across Levels

o Ensure data integrity and functional equivalence at each boundary:

o Cross-check inputs and outputs between boundary-boxed blocks and original RTL.

o Validate assumptions by verifying end-to-end integrity.

C. The abstractions applied

A few more abstraction strategies[6] are also used in the hierarchical verification process to combat the complexity.

o FIFOs: Symbolic depth between 1 and MAX_DEPTH, stable depth during formal runs, full when size reaches

depth, and cannot pop elements if size is 0.

o Credit Reduction: Ensure max_credit is within [1, MAX_CREDITS] for formal verification, finding resource

issues like starvation/deadlock around the last available credit soon.

o Memories: Symbolic abstraction for reading/writing a single address location with a minimum 1-cycle delay.

o Memories with Bypass: Data sent to RAM or directly read into output with 0 or more cycle delay.

o RFC (8R/8W) Memories with Bypass: Multiple simultaneous reads/writes, exclusive and exhaustive write

address ranges, and bypass saves 1 cycle if read address matches write addresses.

VII. BUG EXAMPLES

A. Issues with steering logic

Several issues were found related to steering logic between several types of nodes. Traffic flows smoothly when it

passes through the same kind of node, but there are many corner cases when packets flow through various kinds of

nodes.

The first issue shown involved the BSN response channel configuration. The BSN includes one response channel

input and two response channel outputs. The intended design was to distribute response packets from the input to the

two output channels evenly. However, due to an issue in the arbitration, all response packets were consistently di-

rected to only one of the output channels.

The second issue was also observed in the arbitration process, though it was more complex since the arbitration ap-

pears to operate fairly under typical conditions.

Figure 7: Waveform of fair round robin arbitration

As shown in Figure 7, response channels 0 and 1 are selected evenly when packet types A and B are transmitted

from the BSN. However, when an additional packet type, C, is introduced with a target destination different from A

and B, the BSN directs all type B packets through response channel 1, leaving response channel 0 unused, as shown

in Figure 8.

Figure 8: Waveform of unfair round robin arbitration

B. Connectivity issues

The NoC consists of many interconnected units. Multiple connectivity issues were found. They can be classified into

these kinds: incorrect wire connections, stuck-at-signal connections, data-loss connections, timeout connections, etc.

Hence, besides verifying the functionality inside each unit, we can take a higher-level point of view to ensure each

packet progresses correctly from connection to connection.

C. Crediting issues

The availability of credits governs the flow of packets in the NoC. We must ensure that the credits in each unit are

instated, consumed, retained, and returned correctly. Credit tracking and end-to-end checkers were implemented to

ensure that credits were not lost and returned to the originating sources correctly. These credit checks were valuable

in building confidence and finding some simulation-resisted issues.

VIII. RESULTS

Figure 9 shows the complexity and results for ASN, BSN, CSN, and MBN nodes. Full means full RTL is used for

the switch module, BBX means the RTL is not used for the switch module, and AM means the switch module is re-

placed by abstract models (AM). Figure 10 shows the complexity and results for the switch modules corresponding

to the nodes.

A. Formal Netlist Complexity of Node modules

Nodes Interfaces Registers Logics Constraints RTL Asserts Formal Checkers

ASN w/ Switch Full 412 19K 320K 952 1743 502

ASN w/ Switch AM 412 11K 282K 1372 527 732

ASN w/ Switch BBX 412 10K 241K 952 527 502

BSN w/ Switch Full 48 203K 751K 1150 3170 890

BSN w/ Switch AM 48 75K 661K 1360 790 890

BSN w/ Switch BBX 48 27K 419K 1150 790 890

CSN w/ Switch Full 120 69K 1890K 12108 9245 17464

CSN w/ Switch AM 120 42K 1080K 10878 4327 17464

CSN w/ Switch BBX 120 41K 1078K 9898 4327 17244

MSN w/ Switch Full 32 13K 271K 837 1565 590

MSN w/ Switch AM 32 10K 224K 1233 490 746

MSN w/ Switch BBX 32 10K 209K 837 490 590
Figure 9: Summary of formal netlist complexity and properties for the NoC nodes

B. Formal Netlist Complexity of Switch modules

Switches Interfaces Counters Registers Constraints Asserts Covers

ASN Switch dt 238 251 2613 98 1285 2834

ASN Switch rq 203 187 1990 84 1006 2172

ASN Switch rp 226 219 2293 85 1186 2570

BSN Switch dt 253 304 2956 91 1287 2738

BSN Switch rq 253 239 2581 94 1110 2342

BSN Switch rp 371 662 6202 128 2427 5317

CSN Switch fdt 327 541 4950 94 1911 4253

CSN Switch frq 327 523 4949 94 1863 4141

CSN Switch frp 327 523 4949 94 1863 4141

CSN Switch sdt 323 438 4574 103 1711 3789

CSN Switch srq 366 554 5752 117 2083 4666

CSN Switch srp 346 493 5173 108 1895 4218

MSN Switch dt 253 239 2549 94 1110 2342

MSN Switch rq 162 139 1275 60 698 1425

MSN Switch rp 162 139 1414 60 698 1425
Figure 10: Summary of formal netlist complexity and properties for the NoC switches

C. Checklist for Formal signoff

The table in Figure 11 summarizes the targeted formal signoff goals. We are close to these targets but will update

them when we have the final numbers.

 ASN BSN CSN MSN

Formal Completed

Test plan completed 100% 100% 100% 100% Review completed

Design size reduction Done Done Done Done Review completed

Interface constraints implemented 100% 100% 100% 100% No failure in simulation

Formal checkers implemented 100% 100% 100% 100%

COI coverage met 90+% 90+% 90+% 90+% Formal coverage

RTL asserted verified 100% 100% 100% 100% No violation

Formal checkers verified 100% 100% 100% 100% No violation

Formal Signoff

Advanced abstraction techniques Done Done Done Done Described in [1][6]

RPD target met 70+% 70+% 70+% 70+% Required Proof Depth

Forward progress implemented 100% 100% 100% 100%

Forward progress verified 100% 100% 100% 100% No violation

Formal coverage met 90+% 90+% 90+% 90+% Formal coverage
Figure 11: Summary of formal signoff process and requirements

D. Future work

Regarding formal coverage, the coverage data is currently measured at each level (mesh, node, switch) inde-

pendently and is not merged. We would explore that possibility with formal tool vendors in the future.

IX. REFERENCE

[1] Ipshita Tripathi, et al., “Process & Proof for Formal Sign-off - Live Case Study,” Oski, DVCon 2016
[2] Mandar Munishwar, et al., "Architectural Formal Verification of System-Level Deadlocks," Qualcomm, Oski,

DVCon 2018.
[3] Syed Suhaib, “Architectural Formal Verification for Coherency,” Nvidia, DVCon 2018 Tutorial
[4] Vaibhav Agrawal, “Ensure Forward Progress with Formal: A Case Study of the Arm Cortex-A77 Instruction

Fetch Unit”, ARM, JUG 2019
[5] Saurabh Chaurdia, et al., “Detecting Circular Dependencies in Forward Progress Checkers,” Nvidia, DVCon

2021
[6] Ping Yeung, et al, “Raising the level of Formal Signoff with End-to-End Checking Methodology,”

Nvidia,DVCon 2022

