(2024

DESIGN AND VERIFICATION ™

DVGON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Automating the Formal Verification of Firmware:
A Novel Foundation and Scalable Methodology

Bryan Olmos, Sanjana Sainath, Wolfgang Kunz, Djones Lettnin
R

.f;_ i -Pfalzische ;
Cinfineon " tuzmss=

Landau

Motivation of the Paper

* Increase the reliability of firmware designs based on C code
* Help meet industry standards
* Reducing costs by catching problems earlier

Tesla recalls almost 12k vehicles, 2021 A glitch in its Full-Self Driving software
T-Mobile data breach, 2021 Affects 50 million customers
Amazon AWS Outage, 2017 Problems for hundreds of websites

AR

DESIGN-AND IFICATI
CONFEREMNCE AND EXHIBITION

Scope — Target Software

* This paper verifies software used to control hardware devices

Applications o (o .
Mp_:dl * Property Verification
S e Weaknesses Detection

)
S
@®©
3

£
o

»

-]
]

]

-]
@

-]
S
i

[Driver] Code Coverage
Bare Metal Software

Firmware

CPU Subsystem Application Specific Processors E EE
| é o]
-
o
53 53

[[=
[EEE
EEEE

Hardware

Integrated Circuit Level Board Level Product Level

Source: D. Lettnin, M. Winterholer. Embedded Software Verification and Debugging. Springer. 2017.

2024

DESIGN AND VERIEICATION™

Background — 1S026262-6 Standard

* 1ISO26262-6 specifies the requirements for product development at
the software level for automotive applications

* The standard recommends the analysis of requirements and
requirements based tests for all the ASIL (Automotive Safety Integrity
Levels)

* To evaluate the code coverage, the standard specifies 3 metrics:
* Statement coverage

* Branch coverage
 MC/DC (Modified Condition/Decision Coverage)

Background — Model Driven Arhictecture (MDA)

Model Driven Architecture SW MDA
* MoT: Formalization of things and Computation Vodel of Thinas
Independent Model 9

their intended functionality e (MoT)

* MoP: Abstract property model

° MOV: Flnal layer ta rgetlng the Platform Independent Model of Properties
verification of firmware deigns Heeel (I ; [ietz)
Platform Specific Model of View
Model (PSM) (MoV)

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

Background — Formal Verification and CBMC

» Testing-based techniques can only show the presence of bugs,
not their absence

e CBMC - Bounded Model Checker for ANSI C

e Exhaustive analysis of the code

* Cross-function verification

* Detection of software weaknesses
* Branch and MC/DC coverage

Verification Challenges - Example

(1) int tolerance = 8; :

(2) void select_action(int v_in, int v _out){ * DEtECtlon Of Weaknesses

(3) int v_ratio; * Line 5: Division by O

(4) int action;

(5) v_ratio = abs(v_in/v_out) + tolerance; ° UnreaChabIe paths

(6) if (v_ratio < 8){

(7) action = 1; * Line 6: v_ratio is never less than 8
(8) } else if (v_ratio >= 8 && v_ratio <= 20){

(9) action = 2; * Safety Properties

(18) } else {] . . r-
(11) action = 3; * Line 13: assertion must be verified
(12) }

(13) if (v_in > 100 && v_out> 80){assert(action == 2);} fOr a” the pOSSIble ValueS.

14 it ist tion); .
515; } rite registentaction * Automation of the process

function select_action decision/condition “v_ratio < 8' false: SATISFIED
function select_action decision/condition “v_ratio < 8' true: FAILED

2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Proposed Approach - Overview

A)_Initial Setup B) Generation of Contracts and Scripts C)_Verification Process D)_Extract Results

— Contract file \
Packed @ MT1 MT2 MT3 E ,
Instructions T2 Script to Run CBMC

|E| Script to Get Results

| | MoT 4 MoP y | oo \
‘g)C>_)I C > @MC Mako Template
T i : ' Fo Property Verification
"""""""""" Weaknesses Detection ST Result

Metamodel % Code Coverage E:M H—> : @_ Plugin /

Generated ' .o :
Makefile Foomal | 0 — e

Specification A | Main Script

#define __mul(a,b) __ a*b

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Proposed Approach — Initial Setup

* A "tag" is generated for each requirement
* This tag is assigned to the functions of the C code

void function_req 1(){
//tagl

req_1 —> :

void function_req 2(){
//tag2

In-house
req_2 —P>specification
tool

}

void function_req 3(){

req 3——» //teg3

}

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

Proposed Approach — Initial Setup(2)

* The safety properties must be T —
1 1 . o : string [0..1 stn
linked into a metamodel which Weaknesses : sfing [0.1] |k _ef o
. Formulas : string [*] 1 rootNoc
|nCIUdeS: Bound : string [0..1]
Architecture : string [0..1] * $
* Preconditions Requirment
FungtlonType . string [1]
* Postconditions D1

Function : string [0..1]
Tag : string [0..1]

* Hardware values (boot mode, reset Type : string [0..1]
Form : string [0..1]

mOde) FileName : string [0..1]
e Platform parameters: bound and e - iAo

architecture Expression : [1 Expression : [1 Expression : [1

Name : string [1] Name : string [1] Name : string [1]
H H . - int [0.. ID :int[0..1 ID :int[0..1

* Verlflcatlon pa ra mete rs: type Of COde ::?eg:ge[?; ;{]egister l Reg:gtealr: R]egister " Reg:gte[r: R]egister ["]

cove rage wea kn esses u nde r ana |y5iS FunctionCode : string [*] FunctionCode : string [*] FunctionCode : string [*]

)

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Proposed Approach — Generation of Contracts

* The contracts are generated based on the specification

(1) #ifndef FILE_DECLARATION REQ 1

2)#define FILE_DECLARATION REQ 1

Oy sincluge "ile ren g e * file_req_1.c: C file implementing the
(4)#endif .

(5)#include "formulas.h" reqUIrement

(6)void contract_requirement 1(){

(7)signed int nondet_int(); * formulas.h: file with arithmetic

(8) //Initial values for registers e

(9) REGISTER_1__ WRITE(nondet_int); exp ress | O n S

(10) REGISTER_2__ WRITE(nondet_int);

(11) HW_VALUE(adress,value);
(12) /) Preconditions * If required, input values in the function
(13) if(REGISTER_1_ READ() >= formula){ . .

(14) // Function Under Verification are a|SO InCIUded 18 the COntraCt

(15) function_req_1();

(16) // Postconditions

(17) assert(REGISTER_2_ READ() == 1);

(18) }

(19) }

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Proposed Approach — Generation of Contracts

* To get the main code coverage, a new contract file was generated.
This file calls the functions under verification of all the contracts

(1)#include "file contract 1.c"
(2)#include "file contract 2.c"
(3)//...

(4)#include "file contract n.c"
(5)int main(){

(6) contract_requirement_1();
(7) contract_requirement 2();

(8)//...
(9) contract_requirement_n();
(10) }

2924

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Proposed Approach — Makefile Example

* The user can access the verification parameters via a Makefile

* file.xml: generated by our in-house

run_verification: . .
specification tool

python run_verification.py \
--specification_file = file.xml \
--code_folder = files/source_folder/ \

source_folder: location of C code

--Weakneises=ad \ * a (arithmetic overflow check)
--cc=mb

--bound=16 \ e d (division by zero check)
--arch=32 \

D= CBMC__ * m (MC/DC coverage)

* b (branch coverage)

e --D: directives of the code
2024

DESIGN-AND VERIEICATION™

E)\/E:EJI\I

NFEREMNCE AND EX|

Proposed Approach — Generation of Scripts

* The scripts are generated based on the Makefile

(file= open("results.xml",'w")
subprocess.check call(['cbmc’,

I, 'folder 1/°, The scripts follows the syntax of CBMC:
'-1', 'folder_2/", * Include all the paths of the code folder (-I)
‘-D', '__CBMC__ ', . . :

‘file req l.c', * Directives are added using (-D)

‘limits.c, e Include all the C files i.e. Cross-over
protection.c, verification

'--unwind', "16",

.32, * Include the name of the contract

'--cover', 'mcdc',

"--xml-ui',

'--function', 'contract_requirement_1'
],stdout=Ffile

2924

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Proposed Approach — Verification Process

@ Property
Verification

A

* Verify the properties with the specified

— bound
] * Verity the weaknesses considering the
N range values of the requirements
@ wi\::iiknns?rs;its i Weaknesses . .
 Verify the code to check all the possible
Goaoasssd>—" weaknesses without consider the range
L of values
©[cow comonn|y USRS ET
P * Compute the code coverage

2924

DESIGN AND VERIEICATION™

OVECON

CONFEREMNCE AMND E

Proposed Approach — Extract Results

* The output results of CBMC were filtered in order to obtain the unit
coverage, file coverage and code coverage using the branch and MC/DC
coverage criteria

2024-01-16T11:10:22.753652 VERIFICATION SUCCESSFUL
PROPERTY RUNTIME : O hours, 0 minutes, 0 seconds, 223 milliseconds

UNIT BRANCH COVERAGE: function_test. %% 4 of 9 covered (44.44%)
FILE BRANCH COVERAGE: file_req_l.c: *% 10 of 18 covered (55.55%)
Code coverage: ** 27 of 57 covered (47.4%)

Coverage Time: 0 hours, 0 minutes, 0 seconds, 386 milliseconds

UNIT MCDC COVERAGE: function_test. %% 9 of 22 covered (40.90%)
FILE MCDC COVERAGE : file_req_1.c: ** 21 of 37 covered (56.75%)
Code coverage: *% 44 of 109 covered (40.4%)

Coverage Time: 0 hours, 0 minutes, 0 seconds, 499 milliseconds

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Proposed Approach — Extract Results (2)

* The output results of CBMC were filtered in order to obtain the unit coverage,
file coverage and code coverage using the branch and MC/DC coverage
criteria

TYPE : DIV-BY-ZERO-CHECK
RESULT: FAILURE

WEAKNESS TOTAL: 21 _ Qut of 6 assertions related to division by 0, 2 have failed
TOTAL CASES: 6

WEAKNESSES TIME: O hours, 0 minutes, 0 seconds, 104 milliseconds

PROPERTY: function_ 2.division-by-zero.2
REASON: division by zero in value / return_value REGISTER1 _GET
RESULT: FAILURE

FUNCTION: function_ 2| - The weakness location is printed for debugging
FILE: examplel.c

2024

DESIGN AND VERIEICATION™

Results(1)

 The methodology was applied during the pre-development phase of
firmware designs for the verification of safety properties

. L Weaknesses
Design Property Verification Verification Code Coverage
Name| LoC SafetY Avg Generéted Branch MC/DC Totgl
PropertiesRuntime (s)| assertions Runtime
FW1 | 120k 6 49 9119 1.5% | 2min | 3,90% [3min| 2h
FW2 | 9k 10 0,48 17675 40,60%| 4s |52,20% | 6s | 4min
FW3 | 15k 8 0,675 34306 10,10%| 3s |16,30% | 4s 6min
FW4 | 12k 10 1,029 6395 11.6% 3s 113,85% | 3S | 4min

Results(2)

1000

100

[
<o

MC/DC Coverage Runtime (s)

—FWI (120k LoC)
197 —FW2 (9 LoC)
200
/ —FW3 (15k LoC)
o 114 —FW4 (12k LoC)
53 56 5,7 6,7 7.0 7.4
%;3;
19 24
1 2
0,8 1,3 ’7
2 4 6 8 10 12

Number of Safety Properties

* The average runtime is
determined for the
complexity of the code,
e.g., a code with more
loops or recursive
functions can be more
complex even if it has
less line of code.

2924

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Conclusion and Future Work

* The contracts and scripts were generated in a few seconds for all the
designs

* The runtime of the properties depends on the size and complexity of the
design —similar to a formal verification of hardware

* The reliability of firmware designs can be increased with the use of formal
methods and the MDA

Future work:

Extend the methodology for other model checkers to automate the formal
verification of concurrent designs and Rust programs

Acknowledgment

* This work has been developed in the project VE-VIDES (project label
16 ME0243K) which is partly funded within the Research Programme
ICT 2020 by the German Federal Ministry of Education and Research
(BMBF).

Questions?

Thank you!

2024

DESIGN AND VERIEICATION™

