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Motivation of the Paper

* Increase the reliability of firmware designs based on C code
* Help meet industry standards
* Reducing costs by catching problems earlier

Tesla recalls almost 12k vehicles, 2021 A glitch in its Full-Self Driving software
T-Mobile data breach, 2021 Affects 50 million customers
Amazon AWS Outage, 2017 Problems for hundreds of websites
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Scope — Target Software

* This paper verifies software used to control hardware devices
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Source: D. Lettnin, M. Winterholer. Embedded Software Verification and Debugging. Springer. 2017.
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Background — 1S026262-6 Standard

* 1ISO26262-6 specifies the requirements for product development at
the software level for automotive applications

* The standard recommends the analysis of requirements and
requirements based tests for all the ASIL (Automotive Safety Integrity
Levels)

* To evaluate the code coverage, the standard specifies 3 metrics:
* Statement coverage

* Branch coverage
 MC/DC (Modified Condition/Decision Coverage)




Background — Model Driven Arhictecture (MDA)

Model Driven Architecture SW MDA
* MoT: Formalization of things and Computation Vodel of Thinas
Independent Model 9

their intended functionality e (MoT)

* MoP: Abstract property model

° MOV: Flnal layer ta rgetlng the Platform Independent Model of Properties
verification of firmware deigns Heeel (I ; [ietz)
Platform Specific Model of View
Model (PSM) (MoV)
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Background — Formal Verification and CBMC

» Testing-based techniques can only show the presence of bugs,
not their absence

e CBMC - Bounded Model Checker for ANSI C

e Exhaustive analysis of the code

* Cross-function verification

* Detection of software weaknesses
* Branch and MC/DC coverage




Verification Challenges - Example

(1) int tolerance = 8; :

(2) void select_action(int v_in, int v _out){ * DEtECtlon Of Weaknesses

(3)  int v_ratio; * Line 5: Division by O

(4) int action;

(5) v_ratio = abs(v_in/v_out) + tolerance; ° UnreaChabIe paths

(6) if (v_ratio < 8){

(7) action = 1; * Line 6: v_ratio is never less than 8
(8) } else if (v_ratio >= 8 && v_ratio <= 20){

(9) action = 2; * Safety Properties

(18) } else { ] . . r-
(11) action = 3; * Line 13: assertion must be verified
(12) }

(13) if (v_in > 100 && v_out> 80){assert(action == 2);} fOr a” the pOSSIble ValueS.

14 it ist tion); .
515; } rite registentaction * Automation of the process

function select_action decision/condition “v_ratio < 8' false: SATISFIED
function select_action decision/condition “v_ratio < 8' true: FAILED
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Proposed Approach - Overview

A)_Initial Setup B) Generation of Contracts and Scripts C)_Verification Process D)_Extract Results

— Contract file \
Packed @ MT1 MT2 MT3 E ,
Instructions T2 Script to Run CBMC

|E| Script to Get Results

| | MoT 4 MoP y | oo \
‘g )C>_)I C > @MC Mako Template
T i : ' Fo Property Verification
"""""""""" Weaknesses Detection ST Result

Metamodel % Code Coverage E:M H—> : @_ Plugin /

Generated ' .o :
Makefile Foomal | 0 — e

Specification A | Main Script

#define __mul(a,b) __ a*b
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Proposed Approach — Initial Setup

* A "tag" is generated for each requirement
* This tag is assigned to the functions of the C code

void function_req 1(){
//tagl

req_1 —> :

void function_req 2(){
//tag2

In-house
req_2 —P>specification
tool

}

void function_req 3(){

req 3——» //teg3

}
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Proposed Approach — Initial Setup(2)

* The safety properties must be T —
1 1 . o : string [0..1 stn
linked into a metamodel which Weaknesses : sfing [0.1] |k _ef o
. Formulas : string [*] 1 rootNoc
|nCIUdeS: Bound : string [0..1]
Architecture : string [0..1] * $
* Preconditions Requirment
FungtlonType . string [1]
* Postconditions D1

Function : string [0..1]
Tag : string [0..1]

* Hardware values (boot mode, reset Type : string [0..1]
Form : string [0..1]

mOde) FileName : string [0..1]
e Platform parameters: bound and e - iAo

architecture Expression : [1 Expression : [1 Expression : [1

Name : string [1] Name : string [1] Name : string [1]
H H . - int [0.. ID :int[0..1 ID :int[0..1

* Verlflcatlon pa ra mete rs: type Of COde ::?eg:ge[?; ;{]egister l Reg:gtealr: R]egister " Reg:gte[r: R]egister ["]

cove rage wea kn esses u nde r ana |y5iS FunctionCode : string [*] FunctionCode : string [*] FunctionCode : string [*]

)
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Proposed Approach — Generation of Contracts

* The contracts are generated based on the specification

(1) #ifndef FILE_DECLARATION REQ 1

2)#define FILE_DECLARATION REQ 1 . . . .

Oy sincluge "ile ren g e * file_req_1.c: C file implementing the
(4)#endif .

(5)#include "formulas.h" reqUIrement

(6)void contract_requirement 1(){

(7)signed int nondet_int(); * formulas.h: file with arithmetic

(8) //Initial values for registers e

(9) REGISTER_1__ WRITE(nondet_int); exp ress | O n S

(10) REGISTER_2__ WRITE(nondet_int);

(11) HW_VALUE(adress,value); . . . .
(12) /) Preconditions * If required, input values in the function
(13) if(REGISTER_1_ READ() >= formula){ . .

(14) // Function Under Verification are a|SO InCIUded 18 the COntraCt

(15) function_req_1();

(16) // Postconditions

(17) assert(REGISTER_2_ READ() == 1);

(18) }

(19) }
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Proposed Approach — Generation of Contracts

* To get the main code coverage, a new contract file was generated.
This file calls the functions under verification of all the contracts

(1)#include "file contract 1.c"
(2)#include "file contract 2.c"
(3)//...

(4)#include "file contract n.c"
(5)int main(){

(6) contract_requirement_1();
(7) contract_requirement 2();

(8)//...
(9) contract_requirement_n();
(10) }
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Proposed Approach — Makefile Example

* The user can access the verification parameters via a Makefile

* file.xml: generated by our in-house

run_verification: . .
specification tool

python run_verification.py \
--specification_file = file.xml \
--code_folder = files/source_folder/ \

source_folder: location of C code

--Weakneises=ad \ * a (arithmetic overflow check)
--cc=mb

--bound=16 \ e d (division by zero check)
--arch=32 \

D= CBMC__ * m (MC/DC coverage)

* b (branch coverage)

e --D: directives of the code
2024
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Proposed Approach — Generation of Scripts

* The scripts are generated based on the Makefile

(file= open("results.xml",'w")
subprocess.check call([ 'cbmc’,

I, 'folder 1/°, The scripts follows the syntax of CBMC:
'-1', 'folder_2/", * Include all the paths of the code folder (-I)
‘-D', '__CBMC__ ', . . :

‘file req l.c', * Directives are added using (-D)

‘limits.c, e Include all the C files i.e. Cross-over
protection.c, verification

'--unwind', "16",

.32, * Include the name of the contract

'--cover', 'mcdc',

"--xml-ui',

'--function', 'contract_requirement_1'
],stdout=Ffile
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Proposed Approach — Verification Process

@ Property
Verification

A

* Verify the properties with the specified

— bound
] * Verity the weaknesses considering the
N range values of the requirements
@ wi\::iiknns?rs;its i Weaknesses . .
 Verify the code to check all the possible
Goaoasssd>—" weaknesses without consider the range
L of values
©[cow comonn|y USRS ET
P * Compute the code coverage
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Proposed Approach — Extract Results

* The output results of CBMC were filtered in order to obtain the unit
coverage, file coverage and code coverage using the branch and MC/DC
coverage criteria

2024-01-16T11:10:22.753652 VERIFICATION SUCCESSFUL
PROPERTY RUNTIME : O hours, 0 minutes, 0 seconds, 223 milliseconds

UNIT BRANCH COVERAGE: function_test. %% 4 of 9 covered (44.44%)
FILE BRANCH COVERAGE: file_req_l.c: *% 10 of 18 covered (55.55%)
Code coverage: ** 27 of 57 covered (47.4%)

Coverage Time: 0 hours, 0 minutes, 0 seconds, 386 milliseconds

UNIT MCDC COVERAGE: function_test. %% 9 of 22 covered (40.90%)
FILE MCDC COVERAGE : file_req_1.c: ** 21 of 37 covered (56.75%)
Code coverage: *% 44 of 109 covered (40.4%)

Coverage Time: 0 hours, 0 minutes, 0 seconds, 499 milliseconds
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Proposed Approach — Extract Results (2)

* The output results of CBMC were filtered in order to obtain the unit coverage,
file coverage and code coverage using the branch and MC/DC coverage
criteria

TYPE : DIV-BY-ZERO-CHECK
RESULT: FAILURE

WEAKNESS TOTAL: 21 _ Qut of 6 assertions related to division by 0, 2 have failed
TOTAL CASES: 6

WEAKNESSES TIME: O hours, 0 minutes, 0 seconds, 104 milliseconds

PROPERTY: function_ 2.division-by-zero.2
REASON: division by zero in value / return_value REGISTER1 _GET
RESULT: FAILURE

FUNCTION: function_ 2| - The weakness location is printed for debugging
FILE: examplel.c
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Results(1)

 The methodology was applied during the pre-development phase of
firmware designs for the verification of safety properties

. L Weaknesses
Design Property Verification Verification Code Coverage
Name| LoC SafetY Avg Generéted Branch MC/DC Totgl
PropertiesRuntime (s)| assertions Runtime
FW1 | 120k 6 49 9119 1.5% | 2min | 3,90% [3min| 2h
FW2 | 9k 10 0,48 17675 40,60%| 4s |52,20% | 6s | 4min
FW3 | 15k 8 0,675 34306 10,10%| 3s |16,30% | 4s 6min
FW4 | 12k 10 1,029 6395 11.6% 3s 113,85% | 3S | 4min




Results(2)

1000

100

[
<o

MC/DC Coverage Runtime (s)

—FWI (120k LoC)
197 —FW2 (9 LoC)
200
/ —FW3 (15k LoC)
o 114 —FW4 (12k LoC)
53 56 5,7 6,7 7.0 7.4
%;3;
19 24
1 2
0,8 1,3 ’7
2 4 6 8 10 12

Number of Safety Properties

* The average runtime is
determined for the
complexity of the code,
e.g., a code with more
loops or recursive
functions can be more
complex even if it has
less line of code.
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Conclusion and Future Work

* The contracts and scripts were generated in a few seconds for all the
designs

* The runtime of the properties depends on the size and complexity of the
design —similar to a formal verification of hardware

* The reliability of firmware designs can be increased with the use of formal
methods and the MDA

Future work:

Extend the methodology for other model checkers to automate the formal
verification of concurrent designs and Rust programs
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Questions?

Thank you!
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