
Automating the Formal Verification of Firmware: 
A Novel Foundation and Scalable Methodology
Bryan Olmos, Sanjana Sainath, Wolfgang Kunz, Djones Lettnin



Motivation of the Paper

Software bugs Consequences

Tesla recalls almost 12k vehicles, 2021 A glitch in its Full-Self Driving software

T-Mobile data breach, 2021 Affects 50 million customers

Amazon AWS Outage, 2017 Problems for hundreds of websites

• Increase the reliability of firmware designs based on C code

• Help meet industry standards

• Reducing costs by catching problems earlier



Scope – Target Software

Source: D. Lettnin, M. Winterholer. Embedded Software Verification and Debugging. Springer. 2017.

Product LevelBoard LevelIntegrated Circuit Level

Em
b

e
d

d
ed

 S
o

ft
w

ar
e

H
ar

d
w

ar
e

• This paper verifies software used to control hardware devices

• Property Verification
• Weaknesses Detection
• Code Coverage



Background – ISO26262-6 Standard 

• ISO26262-6 specifies the requirements for product development at 
the software level for automotive applications

• The standard recommends the analysis of requirements and 
requirements based tests for all the ASIL (Automotive Safety Integrity 
Levels)

• To evaluate the code coverage, the standard specifies 3 metrics:
• Statement coverage

• Branch coverage 

• MC/DC (Modified Condition/Decision Coverage)



Background – Model Driven Arhictecture (MDA)

• MoT: Formalization of things and
their intended functionality

• MoP: Abstract property model

• MoV: Final layer targeting the
verification of firmware deigns



Background – Formal Verification and CBMC

• Testing-based techniques can only show the presence of bugs, 
not their absence

• CBMC - Bounded Model Checker for ANSI C
• Exhaustive analysis of the code

• Cross-function verification

• Detection of software weaknesses

• Branch and MC/DC coverage



Verification Challenges - Example

• Detection of Weaknesses
• Line 5: Division by 0

• Unreachable paths
• Line 6: v_ratio is never less than 8

• Safety Properties
• Line 13: assertion must be verified 

for all the possible values.

• Automation of the process



Proposed Approach - Overview

#define __mul(a,b)__ a*b



Proposed Approach – Initial Setup
• A "tag" is generated for each requirement 

• This tag is assigned to the functions of the C code



Proposed Approach – Initial Setup(2)

• The safety properties must be 
linked into a metamodel which 
includes:
• Preconditions

• Postconditions

• Hardware values (boot mode, reset 
mode)

• Platform parameters: bound and 
architecture

• Verification parameters: type of code 
coverage, weaknesses under analysis



Proposed Approach – Generation of Contracts

• file_req_1.c: C file implementing the 
requirement

• formulas.h: file with arithmetic 
expressions 

• If required, input values in the function 
are also included in the contract

• The contracts are generated based on the specification



Proposed Approach – Generation of Contracts
• To get the main code coverage, a new contract file was generated. 

This file calls the functions under verification of all the contracts



Proposed Approach – Makefile Example

• The user can access the verification parameters via a Makefile

• file.xml: generated by our in-house
specification tool

• source_folder: location of C code

• a (arithmetic overflow check)

• d (division by zero check)

• m (MC/DC coverage)

• b (branch coverage)

• --D: directives of the code



Proposed Approach – Generation of Scripts

The scripts follows the syntax of CBMC:
• Include all the paths of the code folder (-I)

• Directives are added using (-D)

• Include all the C files i.e. Cross-over
verification

• Include the name of the contract

• The scripts are generated based on the Makefile



Proposed Approach – Verification Process

• Verify the properties with the specified
bound

• Verify the weaknesses considering the
range values of the requirements

• Verify the code to check all the possible
weaknesses without consider the range
of values

• Compute the code coverage



Proposed Approach – Extract Results
• The output results of CBMC were filtered in order to obtain the unit 

coverage, file coverage and code coverage using the branch and MC/DC 
coverage criteria



Proposed Approach – Extract Results (2)
• The output results of CBMC were filtered in order to obtain the unit coverage, 

file coverage and code coverage using the branch and MC/DC coverage 
criteria

- Out of 6 assertions related to division by 0, 2 have failed

- The weakness location is printed for debugging



Results(1)
• The methodology was applied during the pre-development phase of 

firmware designs for the verification of safety properties

Design Property Verification
Weaknesses 
Verification

Code Coverage

Name LoC
Safety 

Properties
Avg

Runtime (s)
Generated
assertions

Branch MC/DC
Total 

Runtime
FW1 120k 6 49 9119 1.5% 2min 3,90% 3min 2h
FW2 9k 10 0,48 17675 40,60% 4s 52,20% 6s 4min
FW3 15k 8 0,675 34306 10,10% 3s 16,30% 4s 6min
FW4 12k 10 1,029 6395 11.6% 3s 13,85% 3S 4min



Results(2)

• The average runtime is 
determined for the 
complexity of the code, 
e.g., a code with more 
loops or recursive 
functions can be more 
complex even if it has 
less line of code.



Conclusion and Future Work

• The contracts and scripts were generated in a few seconds for all the 
designs

• The runtime of the properties depends on the size and complexity of the 
design —similar to a formal verification of hardware

• The reliability of firmware designs can be increased with the use of formal 
methods and the MDA

Future work:

Extend the methodology for other model checkers to automate the formal 
verification of concurrent designs and Rust programs



Acknowledgment

• This work has been developed in the project VE-VIDES (project label 
16ME0243K) which is partly funded within the Research Programme 
ICT 2020 by the German Federal Ministry of Education and Research 
(BMBF).



Questions?

Thank you!


