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Abstract-Models are widely used in verification testbenches to solve different challenges in mixed signal verification 

but choosing the right model can be a tough decision for verification engineers. We may choose different types of models 

for design with heavy digital or heavy analog. Even with the same design, we may also choose different types of models for 

different tests. Choosing the right modeling strategy will make the verification work easier and more efficient, while 

choosing the wrong modeling strategy can potentially add up verification effort such as modeling maintenance and can 

impact verification work schedule. In this paper, we will talk about an experiment of how to choose the right modeling 

strategy for a VSP (Video Signal Processing) design with multiple PLLs, and we simulate the same PLL block with an 

AMS model, an open-loop RNM, a closed-loop RNM without EENet, a closed-loop RNM with EENet. In the end of the 

paper, we will show our observations and conclusion based on the experiment.  
 

 

I. INTRODUCTION 

Models are widely used in verification testbenches to solve different challenges in mixed signal verification, but 

choosing the right model can be a tough decision for verification engineers. We may choose different types of 

models for design with heavy digital or heavy analog. Even with the same design, we may also choose different 

types of models for different tests. Choosing the right modeling strategy will make the verification work easier and 

more efficient, while choosing the wrong modeling strategy can potentially add up verification effort such as 

modeling maintenance and can impact verification work schedule. In this paper, we will talk about an experiment of 

how to choose the right modeling strategy for an VSP (Virtual Signal Processing) design with multiple PLLs, and 

we simulate the same PLL block with an AMS model, an open-loop RNM, a closed-loop RNM without EENet, a 

closed-loop RNM with EENet. In the end of the paper, we will show our observation and conclusion based on the 

experiment.  

 

II. PURPOSE AND OPTIONS FOR MODELING 

A. Purpose of modeling 

In mixed signal verification, there are many reasons to use models in the simulation, and we name critical ones as 

below. 

First, models can help verify the concept of architecture before the design is put in. The models can be written 

with different languages and simulated with different tools. It can be Matlab models, Pspice models or 

Verilog/VerilogA/SystemVerilog/VerilogAMS models. Since in our application, we have already had design ready, 

so the modeling for architecture is out of scope for our discussion in this paper. 

Second, models can help improve the simulation speed with behavior to emulate the actual design. This is the 

most critical benefit of modeling used in mixed signal verification. Good modeling strategy can help us reduce the 

verification development cycle time, catch design bugs early, and reduce the cost of simulator license and 

computing resources. 

Third, models can help verify the connectivity of the design. This benefit is especially important for PLL closed-

loop modeling. Basically, the idea is we want to keep the schematic as it is unless it touches transistor level. Doing 

so, we can verify the connectivity of the design and catch the related bugs, including the controlling signals from 

block ports, inter-connectivity between the sub-modules in the PLL design.  

 

B. General modeling strategy 

Which models to choose can depend on the types of design and types of tests to run. 

VerilogAMS is very common to use in analog heavy design projects, such as PMIC (Power Manager IC), Since 

primary purpose of verification is used to verify the correctness of the design, so we need to use design as much as 

possible. We only build VerilogAMS models for switching blocks such as oscillators and switching regulators to 

make most verification tests finish within a reasonable time range, typically from 30 minutes to 2 hours based on the 

complexity of the design. Another good benefit of VerilogAMS models is that they can be connected directly to 



other device modules with actual design in transistor level. Basically, they can be easily plugged into a design, and 

this is a big advantage over RNM. Another benefit is that VerilogAMS supports electrical signal type and can 

accurately reflect the loading effect compared to RNM. The drawback of VerilogAMS models is that they are 

slower than RNM when using the electrical type since they invoke the analog solver. When VerilogAMS models are 

running along with transistor-level schematic views, the simulation speed is usually limited by the schematic views 

instead of the VerilogAMS model views. For a small percentage of verification tests, we also want to set the 

switching blocks in the design view so we can verify the design of those blocks as well. Figure 1 shows an example 

of a common config used in PMIC device. 

 

 
Figure 1. AMS modeling strategy for PMIC device 

 

RNM modeling is very common to use in digital heavy design projects, such as SerDes (Serializer/De-serializer). 

Since the digital core is big with complex digital signal processing, the primary goal is to verify the algorithms and 

design configurations within the RTL code. The modeling requirement for analog blocks such as buffers, PLLs, 

receivers and transmitters, is to emulate the design behavior as much as possible without slowing down the 

simulation. For example, assume we have a verification test finishes in 1 minute when running with digital core 

only. By adding analog block models to enable mixed-signal co-simulation from top level, if the simulation time 

only increases by a few seconds is acceptable while increasing by a few minutes can be too long. So, in this 

application, RNM models instead of VerilogAMS models can be used here to verify the digital core of the design by 

adding small overhead to the simulation time. Figure 2 shows an example of a common config used in SerDes 

device. 

.   
Figure 2. RNM modeling strategy for SerDes device 

 

 

C. Our use case: PLL modeling 

Our VSP (Video Signal Processing) design discussed in this paper is very similar to the SerDes device in Figure 2. 

Among the analog blocks, PLLs are the most challenging blocks for modeling. We have several types of PLL. One 

type of PLL is used in the receiver to de-serialize the incoming data, another type of PLL is used to create a free-

running high speed clock for signal processing, and yet another type of PLL is used in transmitter to serialize the 

data and clock the output. The architectures of the PLLs are very similar except some have fixed frequency divider 

ratios and others require multiple divider ratios and spread spectrum clocking. A conceptual block diagram of the 



PLL is shown below in Figure 3. The PFD and frequency divider are designed with pure logic gates and flip-flops, 

so we can use the primitive SystemVerilog models for those logic components without additional effort to model. 

The challenges are how to model CP (charge pump), LF (Loop Filter) and VCO (voltage control oscillator) to 

achieve an optimum balance of simulation speed and accuracy.  

 

                   

Figure 3. A typical PLL design 

 

Though using RNM in modeling for PLL is a common choice in this type of digital device, we still have questions 

are below: 

a. Which type of RNM should we use? Simple open-loop RNM model, complex closed-loop RNM model or 

advanced closed-loop RNM model with EENet? 

b. Can we use Verilog-AMS model instead of RNM if it is not adding much penalty to the simulation speed? 

After doing the experiment of the four types of PLL modeling, we will give our conclusion in the end. 

III.   AUTOMATED MODELING TESTBENCH 

 Since we might have multiple types of models for a block like the PLL in our example, we need to check the 

correctness of those models. We have created an automated flow to standardize and facilitate the model testbench 

creation process (Fig. 4). 

First, we need to fill in a config spreadsheet to specify where the target blocks are located including Cadence 

library path/name and cell view name. Then the flow uses a SKILL script to extract the list of pins from the symbol 

of the target block and automate the testbench in schematic view with SKILL. The testbench creation has two 

options: single DUT and two DUT. With the two DUT option we can check model against schematic or compare 

two different models. 

As for the testbench, we have STIM_HW (hardware module) which instantiates the hardware components such as 

voltage drivers, capacitors, resistors, and supplies to emulate silicon validation PCB board. STIM_HW is written in 

VerilogAMS which allows us to use electrical signal handling inside the module. STIM_HW has the same pins and 

connects to the DUT directly. In addition, STIM_SW module is used to control the hardware components inside 

STIM_HW, such as ramp voltage source to power up, and enable the DUT through pins. Also, measurement and 

checkers are implemented inside STIM_SW, and STIM_SW is written with SystemVerilog. STIM_HW and 

STIM_SW module skeleton code and testbench schematic are automated by the script, and users need to add content 

to STIM_HW and STIM_SW to complete the test. 

The automated model testbench methodology allows us to check modeling of multiple critical blocks within a 

project in the most effective and efficient way, which ensures us to have reliable approach to verify models. 

 



                                          

Figure 4. Automated Modeling Testbench flow diagram 

 

                                            

Figure 5. Modeling testbench structure 

 

D. 1 DUT versus 2 DUT options 

Traditionally in modeling verification, people tend to put model and schematic side by side in the same testbench 

because it seems to be straightforward, and it is easier to compare the output of model and schematic in this way. 

For switching designs like PLLs or switching regulators, the simulation of the schematic design by itself can take a 

long time, potentially taking hours to run from startup to the settled state. In comparison, AMS models or RNM 

models may take only seconds or minutes to finish. One purpose of model verification is to repeatedly update model 

code to make it match the schematic behavior, especially when the schematic design has been delivered by analog 

designers and verified in analog Spectre testbench. In this scenario, the 1 DUT option is a more efficient solution. 

Basically, the process of developing models with the 1 DUT testbench option is: 

• Create 1 DUT testbench and use DUT as schematic in the testbench config view. Instantiate the hardware 

components in STIM_HW and develop software stimulus to exercise DUT inputs until the correct outputs 

of DUT are observed. The simulation might be long for switching design. 



• Within the same testbench, use DUT as model in a different config view. Run simulation with preliminary 

DUT model, and plot model outputs. If the model outputs behavior differently from the previous schematic 

simulation, we may need to update the model code and rerun or leave as it is if the difference is out of 

scope for the features to be modeled. Since the simulation time is fast by simulating model by itself, so we 

can afford multiple repeated runs and iterations of models within a given work time. 

 

E. PLL design explanation 

To help readers understand the testbench code explained in the rest of the paper, we give a brief introduction to 

the PLL design, especially the in/out ports. 

This PLL design has reference clock to be 71.4MHz (period = 14ns), and frequency divider ratio as 7, so the 

expected PLL output is 500MHz after settled down. 

 
TABLE I 

PLL IN/OUT PORTS 

Pin name Domain Direction Function 

DVDD_12 Analog inout Digital 1.2V supply. 

DVSS_12 Analog inout Digital ground. 

AVDD_33 Analog inout Analog 3.3V supply. 

AVSS_33 Analog inout Analog ground. 

In100u_bg[1:0] Analog inout Bias current: 100uA. 

REF Digital input Reference clock: 71.4MHz 

RESET Digital input Reset control 

PD Digital input Pull down control 

CP_SEL[1:0] Digital input Select charge pump current 

VCO_HD Digital output PLL output: should be 500MHz (frequency divider 
ratio=7) 

PLL_LOCK Digital output Indicate if PLL has locked 

 

 
Figure 6. PLL diagram 

 

F. STIM_HW (hardware) 

STIM_HW is used to put testbench hardware components and connectivity, such as voltage/current driver, ground 

connectivity, resistors, capacitors, and inductors. Besides that, for AMS simulation, we also use STIM_HW to 

define the supply sensitivity for all digital pins, which means we need to tell simulator the supply/ground level for 

digital pins to enable the correct A2D or D2A conversion during the simulation.  

Figure 7 shows all ports in STIM_HW which match the DUT ports for the PLL. You may notice that all ports are 

inout type. Since inout type ports can be connected to input, output or inout ports of other modules, choosing inout 

type helps with the consistency of the testbench creation. 



 

 
Figure 7. PLL STIM_HW (schematic or AMS model simulation) 

 

Since we are building STM_HW for DUT in the view of schematic, AMS model, RNM models, simulation 

compatibility such as how to handle the signal conversion in different domain is a challenge which we need to deal 

with. There are two solutions that we can choose to use. 

Figure 8 shows solution A. Since PLLs in either schematic view or AMS model view have signals in electrical 

domain, the same AMS drivers written with VerilogAMS language can drive both. For PLL in RNM models, all 

signals are in digital domain, so we need digital drivers instead. 

Figure 9 shows solution B. By inserting CM (connect modules) between STIM_HW and PLL DUT, we can use 

the same AMS drivers to drive PLL in different model views. For example, since AMS driver for VDD pins are 

creating output in electrical domain, if we connect the AMS driver to PLL DUT as AMS model, which has VDD 

pins as electrical as well, we just need to configure CM as the direct connect view. However, if it is connected to 

VDD in RNM of PLL DUT, which has VDD pin in the real type, then CM needs to be configured as E2R (electrical 

to real conversion) view. 

The benefit of solution B is that we can use the same hardware drivers for all model configs. However, adding and 

configuring the CMs adds to the complexity of the modeling verification setup. Then we decide to choose solution 

A. 

 

 
Figure 8. STIM_HW solution A 

 

 
Figure 9. STIM_HW solution B 



 

In solution A, since we have multiple testbench config views choosing two sets of drivers, either AMS drivers or 

digital drivers, we are using the example code in Figure 10 to show how to choose different drivers for different 

config views. 

 

 
Figure 10. choose drivers for different config views 

 

The code for AMS drivers is shown in Figure 11. There are several primitive VerilogAMS reuse-ip modules used 

in code. “volt_driver” is an AMS voltage source module. “current_driver” is an AMS current source module. 

“gnd_vams” is an AMS ground module. Those AMS modules are used to connect the supply/bias pins. 

For digital input and output pins, we need to specify the supplySensitivity and groundSensitivity to enable correct 

A2D conversions by the simulator. In addition, we add a corresponding “_dig” version with “reg” type for each 

digital input pin. For example, for RESET pin, we added a signal named RESET_dig with “reg” type. The reason is 

that all digital pins are with “inout” type are with “wire” type so we cannot directly set the pin level to be 0 or 1. So 

we can set the value of RESET_dig with “reg” type and assign RESET_dig to RESET pin with “wire” type. 

 

 
Figure 11. PLL STIM_HW with AMS drivers (schematic or AMS model simulation) 

 



The code for digital drivers is shown in Figure 12. Since both supply voltage pins and bias current pins in RNM 

only have one property, voltage or current, they can be connected directly to the same wreal_driver, which is used to 

generate and control a real type output.  

We don’t need to specify the supplySensitivity and groundSensitivity for digital pins since all digital pins will 

remain digital domain everywhere in the testbench structure.   

 

Figure 12. PLL STIM_HW with digital drivers (RNM model simulation) 

 

G. STIM_SW (software) 

STIM_SW is used to define the test sequence by controlling the hardware components defined in STIM_HW. We 

can either set the voltage/current and ramp time of voltage/current source or set the logic inputs to be 0 or 1. In 

addition, we feed a clock to the REF pin to provide the clock reference to PLL. 

To enable we can use the common test sequence code in STIM_SW for both AMS drivers and digital drivers, we 

are using the same task name and arguments, such as “setv” for both voltage_driver (AMS driver module) and 

wreal_driver (digital driver module). 

 

 

 

 
Figure 13. PLL STIM_SW 

 

In STIM_SW, besides driving the inputs of DUT in the test sequence, we also need to measure the DUT output 

and compare with expected value. The monitor modules we have developed are written with SystemVerilog code 



and take the input with only digital types (bit, logic or real). Since AMS model has some electrical type outputs, we 

need to convert them to real type and send them to monitor modules which can monitor real type. 

The A2D conversion method we are using is to sample electrical signals with “clk” created within analog_clock 

module (Figure 15). This clock can align with analog steps created by simulator, so the sampled signal doesn’t lose 

the precision after A2D conversion. Figure 14 provides a good example of how  analog_clock is created [1]. In the 

waveform shown in Figure 16, Vctrl from VCO in PLL is a fast-changing signal and the major simulation speed 

limiting factor in the AMS model simulation. In the beginning, Vctrl updates comparatively infrequently and then 

changes more often when close to or after PLL settling. Similarly, “clk” from analog_clock module toggles slower 

in the beginning and faster afterwards, which fully align Vctrl toggling response. 

The real type monitors consist of a group of self-developed IP modules to monitor real type signal, 

min/max/average/peak to peak value, or digital type signal like frequency measurement. Those monitors are 

connected to corresponding signals based on the user case. 

 

 
Figure 14. analog_clock module 

 

 
Figure 15. auto-checker mechanism 

 

 

 Figure 16. Analog clock and VCO Vctrl in AMS model simulation 

 

H. How to run simulation 

The most straightforward way of running modeling verification is to create Maestro views in Cadence Virtuoso 

and directly run simulation there. To manage the simulation result directories in a more organized approach and ease 



with post-processing, we use Makefile to netlist and run simulation. Figure 17 shows the modeling verification 

simulation directory structure we used to run PLL simulation. 

 

 

Figure 17. Modeling verification simulation directory structure 

 

 

III. MODELING IMPLEMENTATION 

In this section, we are going to talk about the implementation of all four models for PLL. Since the charge pump 

and loop filter are the keys and most challenging part in the modeling, we will show example code and brief 

explanations below. We also discuss hierarchy conformance for modeling. 

 

A. Hierarchy conformance 

We use models in multiple design phases: prototyping, design optimization, and verification. Interconnect 

verification is often left out in the early design phases when the design implementation is not finalized. During the 

design phase, prototype and design optimization models help with system architecture decisions but may not be 

suited for detailed verification. The design optimization model helps to check that the PLL loop parameters are 

appropriate for the system. In the verification phase, a hierarchically conforming model is critical for checking 

signal and port connections for proper functionality. For hierarchy conformance, we rate models as low, medium, or 

high in the table below. 

 
TABLE II 

PLL MODEL RESULTS COMPARISON 

Hierarchy 

Conformance 

Use  

Low Prototyping 

 
Not all the top port functionality is modeled. For example, instead of using an input 

port's current or voltage a model parameter controls a function directly. PLL 

implementation details may be unknown at this level. 



Medium 
Design 

Optimization 

 
Top port control functionality is modeled but sub-block implementation uses a 

simplified hierarchy. This is true for the closed-loop RNM. The closed-loop RNM 

combines the charge-pump, loop filter, and VCO into a single block that captures 

the dynamics of interest for type-II PLLs but does not scale with bias current. 

High Verification 

 
Detailed port functionality and interconnect are modeled from top-level to the 

lowest level blocks of interest. Here, EEnet models outshine wreal and 

AMS/electrical types because the EEnet discipline is simple to implement and fast 

to simulate for interconnect checks. 

 

B. Open loop RNM model 

The open loop RNM model will use single SystemVerilog model code to emulate the entire PLL behavior without 

knowing the design implementation of the PLL block. Figure 18 shows an example of open loop model code. 

Similarly, we monitor whether the supplies are within the operating range or not. Then we use mathematical 

equation to measure the input REF clock frequency and calculate the PLL output frequency which is 7 times of the 

REF clock. The code implementation of the calculation is skipped in the paper. 



 

Figure 18. PLL open loop model code  

 

C. Closed loop RNM  

There are many ways to model a PLL loop filter. The example below uses real variables C1_v and C2_v to store 

the charge values on the two capacitors. It’s important to note that the ‘up’ and ‘dn’ signals from the PFD are needed 

in the sensitivity list for this model to work. 

 
Figure 19. RNM Filter Code 

To make the ‘up’ and ‘dn’ signals visible to the filter, the closed-loop RNM combines the charge-pump, filter, and 

VCO into a single block. This is good for a general-purpose PLL model but prevents this model from fully verifying 

signals to each sub block. The wreal net type cannot simultaneously relay the charge-pump current with ‘up’ ‘dn’ 

sensitivity and the control voltage. The EEnet net type can transport simultaneous voltage and current information 

and is better suited for maintaining the hierarchy and interconnect of the charge-pump, filter, and VCO. 

 

 



D. Verilog-AMS models 

For AMS models, we still want to keep the logic gates in sub-blocks such as PFD (phase and frequency detector) 

and frequency divider as it is but use logic gates in Verilog or Verilog-AMS view. Then the true design 

implementation of those blocks can be achieved in the model without slowing down the simulation. To emulate 

device analog behavior, there are two approaches to create Verilog-AMS models in general. One approach is to use 

voltage, current equations in analog procedure blocks to model voltage source, current source, capacitor, or resistor 

behavior. But this approach is not straightforward for users especially when we need to model complex network of 

components. The other approach is to leverage pre-created reuse-ip modules for components such as voltage source, 

current source, capacitor, and resistor, and use them as building blocks to put them together. There are some open 

source AMS models online [2]. Then we can use the pre-defined tasks within those reuse-ip modules to control 

them. 

Figure 20 shows the diagram for the charge-pump within the PLL block. The modeling of the charge-pump is 

basically to connect two current sources, and to use input logic control “up” and “dn” to control current source 

value. 

Similarly, as the AMS driver part mentioned in the last session, we need to specify the supplySensitivity and 

groundSensitivity for all digital pins. 

Another critical feature for the model is that we need to detect when the supplies of the block go out of range. For 

example, the operation range for “avdd” pin is between 0.8V and 1.6V, so when “avdd” pin goes out of the range, 

we need to shut off the charge-pump. Here we used the same “clk” signal from analog_clock module to sample 

“avdd” voltage, because it is a dynamic clock to track analog time setups without introducing the penalty of 

simulation slowness. The alternative solution is to use “cross” or “above” function, but it will introduce additional 

time steps when tested signal is getting close to the threshold value, and it can slow down the simulation. 

 

 
Figure 20. Charge pump modeling diagram 

 

  
Figure 21. Charge pump model code  



 

Figure 22 and 23 show the block diagram and model code for the loop filter. Similarly, we are building blocks of 

switch, capacitor and resistor, and the model code is not hard to create and easy to read. 

 
Figure 22. Loop filter diagram  

 

 
Figure 23. Loop filter model code  

E. EEnet model  

EEnet modeling technique is a mix of VerilogAMS modeling and regular RNM modeling. EEnet is a new signal 

type in RNM modeling, and EEnet nodes have three properties: voltage, current, resistance. It can be used to model 

impedance effects. In our PLL example, only EEnet is used to model VCTRL node which connects between charge 

pump, loop filter and VCO. More EEnet nodes can potentially slow down the simulation, so we use EEnet nodes if 

only necessary to model the impedance effect. All the other nodes without EEnet are used in the same way as in 

other RNM models. Figure 24 shows the example code of charge pump models in EEnet, and you can see only “out” 

port is EEnet which is connected to loop filter. 

 Since EEnet capacitors, resistors, switches are provided by vendor Cadence, so we can directly instantiate those 

components in the similar way s VerilogAMS model. This is a big advantage over closed-loop RNM model, and you 

can see in loop filter model (Figure. 25), CapGeq is used to build the loop filter network. 

 



 
Figure 24. Charge pump model code  

 

 

Figure 25. Loop filter model code  

 

IV.   SIMULATION RESULTS COMPARISON 

 

The four PLL models are developed and tested in the automated modeling testbench with the 1 DUT setup and the 

comparison of the four models is shown in table II. 

 

A. Comparison analysis 

As for the development difficulty, AMS model is the most difficult one, especially when we need to handle the 

connectivity for all control, supply voltage and bias current. For example, if we need to sink or source bias current 

into the DUT, and the load of the bias current can be either a valid load in the model, which can be modeled with 

resistor or a voltage source, but also the load can be open circuit. If a bias current goes to the open circuit, the 

voltage keeps increasing and goes to infinity. Then we need to add clamp to the current source, but it can slow down 

the simulation. Also dealing with convergence issue is a challenge, especially when we need lots of AMS modeling 

in the DUT. Open-loop RNM model is a behavior model without considering the true implementation of the design 

and it is easy to create. Closed-loop RNM without EENet is difficult to create as we need to use either Laplace 

function or Bilinear transform, KCL (Kirchhoff’s current law) and KVL (Kirchhoff’s voltage law) to express the 



circuit with mathematical equation in discrete time domain. Also, the equation can be very complicated if the 

complexity of circuit network increases. Building closed-loop RNM with EENet is to plugin EENet components 

such as capacitor, resistor, voltage source, switch models provided by vendor. It is very convenient for users though 

it is the similar equations and theories behind the scenes.  

The second factor compare is that if we need to modify the PLL schematic for modeling. When we use PLL 

schematic without change, we can keep the connectivity between sub-modules (such as PFD, CP, VCO) for PLL as 

it is. The benefits are: 1. We can save the effort of updating the model schematic if there is any change to the design 

schematic. 2. We can verify the connectivity of PLL schematic to catch potential design bugs. AMS model and 

closed-loop RNM with EENet can allow us to use the original PLL schematic. For closed-loop RNM without 

EENet, since we are using the equation to emulate the behavior of charge pump sinking/sourcing current into the 

loop filter, then we need to combine the two blocks when doing modeling. The open-loop RNM model itself is one 

single model code file. 

The third factor is the accuracy of the model. Since the AMS model is simulated in the analog domain, it can have 

very good accuracy, and time step profile tracks the switching behavior of blocks. When the PLL is toggling fast, 

more time steps are created, and simulation is slowing down. When PLL is not toggling, fewer time steps are 

created, and simulation is running fast. So, AMS model accuracy is highest. Both closed-loop RNM without and 

with EENet can still model the PLL settling process with pretty good accuracy by using a fixed sampling clock to 

digitalize the circuit behavior. The accuracy of the two closed-loop models is not as high as that of the AMS model, 

but they are still decently good. The open-loop RNM doesn’t model PLL settling response so the accuracy is low. 

 

 
TABLE III 

PLL MODEL RESULTS COMPARISON 

  
AMS model Open-loop RNM Closed-loop RNM 

without EENet 

Closed-loop RNM with 

EENet 

What feature to 

be modeled? 

Accurate frequency divider 

ratio, settling response, 

charge pump current 
selection, DFT 

Accurate frequency 

divider ratio 

Accurate frequency 

divider ratio, settling 

response 

Accurate frequency 

divider ratio, settling 

response 

Development 

difficulty 

Difficult (deal with 

convergence issue and slow 
sim optimization) 

Easy Difficult (deal with 

mathematical equation) 

Medium 

Change to 

schematic 

No change Yes, combine all blocks 

into one model file 

Yes, combine charge 

pump, loop filter and 
VCO (optional) 

No change 

Driver AMS driver Digital driver Digital driver Digital driver 

Accuracy Highest Lowest High High 

Sim time in 
individual 

testbench 

14 min (can be reduced 
based on optimization) 

~1 second ~1 second ~1 second 

Sim time in a 
top-level 

verification test: 
data path  

Not tested 16 min 10 s 22 min 18s 21 min 35s 

 

When simulating those models in automated verification testbench with 1 DUT option, we can compare VCTRL 

which is the control voltage for VCO to check the accuracy of those models. Figure 26 below shows the comparison 

of closed-loop RNM with and without EENet, and AMS model. From ramp time, settling voltage and jitter size, the 

three models correlate very well with each other. Since open-loop RNM does not include VCO modeling so it is not 

compared here. Simulation time for open-loop RNM, closed-loop RNM with and without EENet is all very fast, and 

can finish around 1 second. AMS model simulation takes 14 minutes to finish. Though some speed optimization 

methods can be used to further improve the speed, simulation time is still far slower than other RNM models. 

In addition, we put those PLL models into a top-level verification test with heavy data transaction and compare 

the simulation speed. Since the AMS model takes long to run even by itself, so we don’t put it in the experiment. 

The simulation with open-loop RNM takes 16 min 10s to finish, while closed-loop RNM with and without EENet 

are performing in a similar speed, around 22 min, which is a little bit slower than open-loop RNM model.  

  

 



 
 

 

 

 
Figure 26. PLL modeling waveform 

 

 

B. Conclusion 

Before the experiment, we were thinking the open-loop model should be used in heavy digital simulation due to 

its simplicity. However, closed-loop RNM models with and without EENet both can be simulated with speed 

comparable to open-loop model and has a big benefit of high accuracy. Between those two RNM models, we would 

pick the one with EENet since it is easier to develop without the need to change PLL schematic. 

So, the conclusion is that for a new project, we would use PLL EENet models in all digital simulation, and still 

use AMS model for a few analog related simulations from top level verification.  
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