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Abstract- Over the past few years, there has been a growing trend of using Python for design verification instead of 

traditional hardware verification languages such as SystemVerilog. However, existing Python verification frameworks 
focus on driving and monitoring signals or solving random constraints, but lack coverage features which make it hard to 
achieve functional coverage closure. This paper proposes a Python environment for enabling more efficient functional 
coverage closure. This environment fully utilizes rich features of SystemVerilog functional coverage as well as leverages 
existing tools for easier coverage analysis. 

 
I.   INTRODUCTION 

Python is easy to learn and has extended its reach into the field of hardware verification [1]. Since Python does not 
have native support for verification features like constrained randomization or functional coverage, open-source 
libraries are being developed to make these functionalities available. However, there are challenges in a real-world 
verification project using Python testbenches, especially for functional coverage. Coverage features supported by 
Python libraries are less powerful than those in SystemVerilog, functional coverage databases are not compatible with 
code coverage databases from logic simulators, and coverage analysis tools are either absent or only have simple 
functions compared to those provided by electronic design automation (EDA) vendors. 

To overcome the limitations addressed above, this paper presents a new approach to closing functional coverage 
with Python. Using this approach, verification engineers proficient in Python but not familiar with SystemVerilog can 
achieve functional coverage closure with much less effort by utilizing user-friendly graphical user interface (GUI) 
tools provided by EDA vendors for coverage closure. 
 

II.   BACKGROUND & PREVIOUS WORKS 

Most Python-based testbenches use Cocotb as their verification framework. Cocotb is an open source coroutine 
based cosimulation testbench environment that allows you to drive input signals of the design under test (DUT) and 
monitor output signals of the DUT in a testbench described in Python [2]. However, Cocotb does not provide built-in 
support for class randomization and functional coverage. To tackle this, open-source libraries like cocotb-coverage 
and PyVSC are developed and being used [3][4]. 

Both cocotb-coverage and PyVSC mimic coverage concepts from SystemVerilog such as covergroup, coverpoint, 
and cross coverage. While these libraries claim they are equipped with coverage features, they cannot fully support 
all the features SystemVerilog offers. For example, cocotb-coverage does not have array bins and auto bins syntax, 
and PyVSC does not have transition bins and ignore bins syntax. 

 

 
 

Figure 1. Python testbench with functional coverage 
 
Figure 1 represents a typical structure of a Python testbench. Python is in charge of running testbench codes and the 

logic simulator is only responsible for register transfer language (RTL) simulation of the DUT. Consequently, code 
and functional coverage collection data are separately generated and stored. The functional coverage database has an 
extensible markup language (XML) format and cannot be opened directly by coverage analysis tools from EDA 
vendors. Verification engineers should either maintain two databases for coverage closure which is hard to manage or 
convert functional coverage databases into compatible formats. Even if the conversion process is successful, utilizing 
convenient features of the coverage analysis tool, such as source browsing, is not possible. 



The lack of coverage features and compatibility of databases addressed above can be a barrier for verification 
engineers who wish to sign-off coverage closure with Python. Thus, we propose a new Python library that enables 
functional coverage closure without compromising quality and efficiency. 

 
III.   PROPOSED WORKS 

 
Figure 2. Python testbench with our proposed functional coverage library 

 
Our proposed Python functional coverage library provides a more straightforward way to define functional coverage  

in Python, and a freedom to express it in a more detailed way than previous works. This is accomplished through a  
SystemVerilog layer on the logic simulator side. As you can see in Figure 2, the Python testbench still takes a role in  
defining and collecting coverage but offloads creating and managing functional coverage databases to the logic  
simulator. The SystemVerilog layer is automatically generated directly from the Python coverage implementation. 

The proposed library is also designed for coverage closure which includes modeling, measuring, analyzing, and 
reviewing coverage. Figure 3 shows the entire process of coverage closure using the proposed library followed by a 
detailed description of each process. 

 

 
 

Figure 3. Overall functional coverage flow using the proposed library 
 

A. Define Functional Coverage in Python 
Our proposed library supports a hierarchical structure for describing coverpoints within a covergroup, similar to 

conventional coverage description methods. Each CoverGroup class includes one or more coverpoints and cross 
coverage of coverpoints. Each CoverPoint class includes bin descriptions. There are two ways to describe bin types: 
(1) using predefined bin types and (2) using user-defined iterators. Predefined bin types provide classes for bin 
constructs that are frequently used by verification engineers; some examples can be found in Table 1. Moreover, these 
predefined bin classes can be combined to make complicated bin expressions possible. 

If it is tricky to make coverpoint bins using predefined bin types, this can be achieved by user-defined iterators. 
Iterator bin types can be as simple as listing through Python default data types (e.g. list, tuple), or as detailed and 
flexible as iterator types including generators. Figure 4 shows coverage bins for AXI strobe signals in case of narrow 
transfers. As in the example, Python generators offer efficient ways to replace lines of code that enumerate every 
single case. 

Cross coverage can be defined as simple as passing a list of coverpoints as in Figure 5. 



 
Predefined  

Coverage Type Python Definition Generated SystemVerilog Coverage Bin Description in document 
# of Bins Bin Description 

Single cp_zero =  
  CoverPoint(BinSingle(0)) cp_zero: coverpoint signal { 

  bins bin_0 = {0}; 
} 

1 0 

Bool cp_bool =  
  CoverPoint(BinBool()) cp_bool: coverpoint signal { 

  bins TRUE = {1}; 
  bins FALSE = {0}; 
} 

2 FALSE(0), TRUE(1) 

Enum class MyEnum(IntEnum): 
  STATE_0 = 0b00 
  STATE_1 = 0b01 
  STATE_2 = 0b10 
STATE_3 = 0b11 

 
cp_enum =  
  CoverPoint(BinEnum(MyEnum)) 

cp_enum: coverpoint signal { 
  bins STATE_0 = {0}; 
  bins STATE_1 = {1}; 
  bins STATE_2 = {2}; 
  bins STATE_3 = {3}; 
} 

4 STATE_0(0),  
STATE_1(1),  
STATE_2(2),  
STATE_3(3) 

Range cp_range = 
 CoverPoint(BinRange(64)) cp_range: coverpoint signal { 

  bins bin_0_63[64] = {[0:63]}; 
} 

64 [0:63]/64 

Uniform cp_uniform = 
  CoverPoint(BinUniform( 
  0, 128, num=5)) 

cp_uniform: coverpoint signal { 
  bins bin_0_127[5] = {[0:127]}; 
} 

5 [0:127]/5 

MinMax cp_minmax =  
  CoverPoint(BinMinMax( 
  min=0, max=127, num_bins=5)) 

cp_minmax: coverpoint signal { 
  bins bin_0 = {0}; 
  bins bin_1_126[3] = {[1:126]}; 
  bins bin_127 = {127}; 
} 

5 0, [1:126]/3, 127 

Exp cp_exp =  
  CoverPoint(BinExp(16))  

cp_exp: coverpoint signal { 
  bins bin_0 = {0}; 
  bins bin_1_1 = {[1:1]}; 
  bins bin_2_3 = {[2:3]}; 
  bins bin_4_7 = {[4:7]}; 
  bins bin_8_15 = {[8:15]}; 
} 

5 0, [1:1], [2:3], [4:7], 
[8:15] 

Bitwise cp_bitwise = 
  CoverPoint(BinBitwise(4)) cp_bitwise_0: coverpoint signal[0]; 

cp_bitwise_1: coverpoint signal[1]; 
cp_bitwise_2: coverpoint signal[2]; 
cp_bitwise_3: coverpoint signal[3];  

8 [0:1]/2 for bit 0~3 

OneHot cp_onehot =  
  CoverPoint(BinOneHot(4)) cp_onehot: coverpoint signal { 

  bins bin_0x1 = {‘h1}; 
  bins bin_0x2 = {‘h2}; 
  bins bin_0x4 = {‘h4}; 
  bins bin_0x8 = {‘h8}; 
} 

4 0x1, 0x2, 0x4, 0x8 

Transition cp_transition =  
  CoverPoint(BinTransition( 
  (2,5), (2,10), (3,8) 
  )) 

cp_onehot: coverpoint signal { 
  bins bin_2_5 = (2=>5); 
  bins bin_2_10 = (2=>10); 
  bins bin_3_8 = (3=>8); 
} 

3 2=>5, 2=>10, 3=>8 

 

Table 1. Pre-defined bin types and generated outputs 
 

Python Definition Generated SystemVerilog Coverage 
 
def narrow_strobe(self, bus_byte_width): 
  for i in range(log2Ceil(bus_byte_width)): 
    size = 1 << i 
    for j in range(bus_byte_width // size): 
      strobe = ((1 << size) - 1) << (j * size) 
      yield (f"en{size}byte_{hex(strobe)}", strobe) 
 
class AxiNarrowTransferCoverage(CoverGroup): 
  cp_strobe = CoverPoint(narrow_strobe(8), format=”x”) 
 
cg_narrow = AxiNarrowTransferCoverage() 

 
covergroup cg_narrow; 
  strobe: coverpoint cg_narrow_cp_strobe { 
    bins en1_0x1  = {'h1}; 
    bins en1_0x2  = {'h2}; 
    bins en1_0x4  = {'h4}; 
    bins en1_0x8  = {'h8}; 
    bins en1_0x10 = {'h10}; 
    bins en1_0x20 = {'h20}; 
    bins en1_0x40 = {'h40}; 
    bins en1_0x80 = {'h80}; 
    bins en2_0x3  = {'h3}; 
    bins en2_0xc  = {'hc}; 
    bins en2_0x30 = {'h30}; 
    bins en2_0xc0 = {'hc0}; 
    bins en4_0xf  = {‘hf}; 
    bins en4_0xf0 = {‘hf0}; 
} 
  
 

Figure 4. Example of defining coverage bins using an iterable object 
  



 
Python Definition Generated SystemVerilog Coverage 

 
class MyCrossCoverage(CoverGroup): 
  cp_1 = CoverPoint([0, 1]) 
  cp_2 = CoverPoint([2, 3]) 
  cp_3 = CoverPoint([4, 5]) 
  cr = Cross([cp_1, cp_2, cp_3]) 
 
cg_cross = MyCrossCoverage()  

 
covergroup cg_cross; 
  cp_1: coverpoint cg_cross_cp_1 { 
    bins bin_0 = {0}; 
    bins bin_1 = {1}; 
  } 
  cp_2: coverpoint cg_cross_cp_2 { 
    bins bin_2 = {2}; 
    bins bin_3 = {3}; 
  } 
  cp_3: coverpoint cg_cross_cp_3 { 
    bins bin_4 = {4}; 
    bins bin_5 = {5}; 
  } 
cr: cross cp_1, cp_2, cp_3; 
  

Figure 5. Example of cross coverage 

 
B. Generate SystemVerilog Layer and Coverage Document 

Once the coverage modeling in Python is finished, our proposed library can generate a SystemVerilog layer and 
corresponding coverage documents in markdown format. The generation process is command-based and fully 
automated, so there is no human intervention. The generated coverage document consists of markdown tables and can 
be imported to the verification plan for a review. Each covergroup has two tables, one for coverpoints and the other 
for cross coverage as in Figure 11. One helpful feature in the coverage document is the column with the number of 
bins, to check if the defined coverage model has an appropriate number of bins. 
 

C. Bring-up Testbench and Collect Coverage 
The next step is writing coverage collection codes for each coverage model. To collect coverage, coverpoint signals, 

and sample signals in the SystemVerilog layer should be driven by the Python Testbench. The connection between 
the Python testbench and the SystemVerilog layer is established by calling a predefined connect method with a 
hierarchical path to the SystemVerilog layer as an input. 

Figure 6 shows an example that measures coverage through a coverpoint handler and a sample handler. When the  
coverage collector wants to sample a value, it assigns the value to a coverpoint handler so that it deposits the value to  
the SystemVerilog layer, and then calls a sample handler to toggle a sample signal in the SystemVerilog layer. 

As coverage databases are created by the logic simulator, it is possible to measure other coverage metrics such as 
code coverage at the same time as a unified coverage database. 

 
 
class MyCoverageCollector: 
  def __init__(self, dut): 
    self.my_cov = MyCoverageModel() 
    cov_inst = getattr(dut, self.my_cov.sv_instname) 
 
    # connect python coverage objects 
    self.my_cov.connect(cov_inst) 
 
  def collect_coverage(self, coverpoint_value): 
    # assign sampling values 
    self.my_cov.my_cg.my_cp <= coverpoint_value 
 
    # trigger sampling 
    self.my_cov.my_cg.sample()  
 
   

 

Figure 6. Code snippet of coverage collector 
 

D. Analyze and Review Functional Coverage 
The final step for coverage closure is to analyze measured coverage data. The EDA vendors have pretty good 

coverage analysis tools with GUIs which help view overall coverage status, detect coverage holes, exclude 
unreachable bins, etc. By leveraging those coverage analysis tools, it is possible to achieve coverage closure as 
efficiently as using SystemVerilog testbenches. 



 
IV.   METHODOLOGY EXAMPLE 

This chapter shows real use-cases with our proposed library. The first one is a simple matrix multiplier and the 
second one is an AXI interface. Complete source codes can be found in our GitHub repository:  
https://github.com/furiosa-ai/dvcon2024-functial-coverage-closure-with-python. 
 
A. A Simple Use Case: Matrix Multiplier 

 

 
class DataInCoverGroup(CoverGroup): 
    a = [CoverPoint(BinMinMax(0, (1<<DATA_WIDTH) - 1, DATA_WIDTH//2)) for _ in range(A_ROWS * A_COLUMNS_B_ROWS * B_COLUMNS)] 
    b = [CoverPoint(BinMinMax(0, (1<<DATA_WIDTH) - 1, DATA_WIDTH//2)) for _ in range(A_ROWS * A_COLUMNS_B_ROWS * B_COLUMNS)] 
    cross_a_b = [Cross([a_i, b_i]) for a_i, b_i in zip(a, b)] 
 
class DataOutCoverGroup(CoverGroup): 
    c = [CoverPoint(BinMinMax(0, (1<<C_DATA_WIDTH) - 1, C_DATA_WIDTH//2)) for _ in range(A_ROWS * B_COLUMNS)] 
 
class DataInCoverage(CoverageModel): 
    cg_data_in = DataInCoverGroup() 
 
class DataOutCoverage(CoverageModel): 
    cg_data_out = DataOutCoverGroup() 
 
data_in_cov = DataInCoverage("data_in_cov_inst") 
data_out_cov = DataOutCoverage("data_out_cov_inst") 
  

 

Figure 7. Coverage definition of the matrix multiplier 
 

 
class InputDataValidMonitor(DataValidMonitor): 
    def __init__(self, clk, datas, valid, dut, coverage): 
        super().__init__(clk, datas, valid) 
        self.coverage = coverage 
        self.coverage.cg_data_in.connect(getattr(dut, coverage.sv_instname)) 
 
    def _sample(self) -> Dict[str, Any]: 
        a_matrix = self._datas["A"].value 
        b_matrix = self._datas["B"].value 
 
        for i, j, n in itertools.product(range(A_ROWS), range(B_COLUMNS), range(A_COLUMNS_B_ROWS)): 
            a_idx = (i * A_COLUMNS_B_ROWS) + n 
            b_idx = (n * B_COLUMNS) + j 
            m_idx = (j * A_COLUMNS_B_ROWS * A_ROWS) + (i * A_COLUMNS_B_ROWS) + n 
 
            self.coverage.cg_data_in[m_idx].a <= a_matrix[a_idx].value 
            self.coverage.cg_data_in[m_idx].b <= b_matrix[b_idx].value 
        self.coverage.cg_data_in[m_idx].sample() 
 
        return super()._sample() 
 
 
class OutputDataValidMonitor(DataValidMonitor): 
    def __init__(self, clk, datas, valid, dut, coverage): 
        super().__init__(clk, datas, valid) 
        self.coverage = coverage 
        self.coverage.cg_data_out.connect(getattr(dut, coverage.sv_instname)) 
 
    def _sample(self) -> Dict[str, Any]: 
        c_matrix = self._datas["C"].value 
 
        for i, j in itertools.product(range(A_ROWS), range(B_COLUMNS)): 
            idx = i * (B_COLUMNS) + j 
            self.coverage.cg_data_out.c[idx] <= c_matrix[idx].value 
        self.coverage.cg_data_out.sample() 
 
        return super()._sample() 
   

Figure 8. Coverage collection of the matrix multiplier 

 



 
Figure 9. Screenshot of functional and code coverage result 

 
Figure 7 represents coverage models for the matrix multiplier, which is one of the Cocotb examples. There are two 

covergroups, one for two input matrices and the other for one output matrix. The number of input coverage bins is 
equal to the total number of multiplications and the number of output coverage bins is equal to the number of elements 
of the output matrix. List comprehensions are used to efficiently generate coverpoint instances with the same type. 

In Figure 8, coverage collection is done by extending the existing bus monitor. Since the _sample method is called 
at every valid transaction, we override this method and add coverage related codes to sample coverage. 

Figure 9 shows the collected coverage metrics after running a certain number of tests. As in the figure, both code 
coverage and functional coverage are displayed together so that verification engineers can identify overall verification 
status easily, which contributes to faster coverage closure. 
 
B. A More Practical Use Case: AXI Interface  

Figure 10 is an example of a functional coverage model for the AMBA AXI using the proposed library [5]. All 
coverpoint classes are concisely described with predefined bin classes and all covergroup classes are simply described 
by inheriting base or extended covergroup classes. Figure 11 and Figure 12 are the generated markdown document on 
a markdown viewer and measured coverage on one of the EDA vendor’s coverage analysis tools, respectively. 
 

 
class AxiAddressChannel(CoverGroup): 
    cp_id = CoverPoint(BinRange(1 << config.id_width)) 
    cp_address = CoverPoint(BinExp(config.addr_width), format="x") 
    cp_burst_type = CoverPoint(BinEnum(AxiBurstType)) 
    cp_burst_size = CoverPoint(BinOneHot(int(log2(config.data_width >> 3)) + 1)) 
    cp_burst_len = CoverPoint(BinMinMax(min=1, max=256, num_bins=8)) 
 
    cp_protection = [CoverPoint(BinEnum(AxiProtectionPrivleged)),  
                     CoverPoint(BinEnum(AxiProtectionSecure)), 
                     CoverPoint(BinEnum(AxiProtectionInstruction))] 
 
    cp_lock = CoverPoint(BinBool()) 
    cp_qos = CoverPoint(BinRange(16)) 
    cp_region = CoverPoint(BinRange(16)) 
    cp_user = CoverPoint(BinBitwise(config.user_width)) 
 
    cross_burst_type_size_len = Cross([cp_burst_type, cp_burst_size, cp_burst_len]) 
 
class AxiDataChannel(CoverGroup): 
    cp_data = CoverPoint(BinUniform(num_bins=64, width=config.data_width), format="x") 
 
class AxiResponseChannel(CoverGroup): 
    cp_id = CoverPoint(BinRange(1 << config.id_width)) 
    cp_response = CoverPoint(BinEnum(AxiResponse)) 
 
class AxiWriteAddressChannel(AxiAddressChannel): 
    cp_cache = CoverPoint(BinEnum(AxiWriteCache), format="b") 
 
class AxiWriteDataChannel(AxiDataChannel): 
    cp_strobe = CoverPoint(BinBitwise(config.data_width >> 3), format="x") 
 
class AxiWriteResponseChannel(AxiResponseChannel): 
    pass 



 
class AxiReadAddressChannel(AxiAddressChannel): 
    cp_cache = CoverPoint(BinEnum(AxiReadCache), format="b") 
 
class AxiReadDataChannel(AxiDataChannel, AxiResponseChannel): 
    pass 
 
class AxiProtocolCoverage(CoverageModel): 
    cg_write_address = AxiWriteAddressChannel() 
    cg_write_data = AxiWriteDataChannel() 
    cg_write_response = AxiWriteResponseChannel() 
    cg_read_address = AxiReadAddressChannel() 
    cg_read_data = AxiReadDataChannel() 
  

Figure 10. Functional coverage definition for AMBA AXI 
 

 
Figure 11. Generated functional coverage document for AMBA AXI 

 



 
Figure 12. Measured  coverage for AMBA AXI on EDA vendor’s coverage analysis tool 

 
V.   CONCLUSION 

Existing Python coverage libraries had limited coverage features and lacked coverage analyzing functionality, 
making it difficult to perform coverage closure on Python-based testbenches. The proposed library seamlessly 
integrates SystemVerilog and Python to implement various types of coverage bins, and is fully compatible with EDA 
tools, allowing use of existing coverage workflows. In addition, we've leveraged the strengths of Python to concisely 
implement coverage and automatically generate documentation for review. These advantages empower engineers, 
streamlining the path to efficient and effective functional coverage closure. 
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