
Functional Coverage Closure with Python
Seokho Lee, Youngsik Kim, Suhyung Kim, 

Jeong Ki Lee, Wooyoung Choe, Minho Kim



Table of Contents

• Backgrounds 
• Python Testbench and Python extension libraries

• Motivation 
• Problems of Coverage Closure in Python Testbench

• Proposed Solution 
• Overall flow & how to guides

• Conclusion



Design Verification using Python

• Python extension libraries for verification
• Cocotb: coroutine based cosimulation testbench environment using Python
• PyVSC: random verification-stimulus generation

• Testbenches can be written and run by Python thanks to open-source 
Python libraries 



Design Verification using Python

• In FuriosaAI, Most block-level testbenches are written in Python
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Problems of Coverage Closure in Python (1/2)

Case 1) Measure coverage by existing Python coverage library
• Separate func coverage DB not compliant with legacy coverage analysis tools
• Python coverage libraries don't fully support SystemVerilog coverage features
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Problems of Coverage Closure in Python (2/2)

Case 2) Measure coverage by SystemVerilog + Logic Simulator
• Seperate SystemVerilog testbench with monitors and coverage collectors
• Both Python and SystemVerilog/UVM skills required
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Our Proposed Solution

• Python testbench has coverage models and coverage collectors
• SystemVerilog coverage layer generates functional coverage database
• At sample, collected coverage data is transferred to SystemVerilog coverage layer
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• Defining a coverage model in python allows the library to connect python with 
SystemVerilog 
• Define coverage by SystemVerilog seamlessly

Our Proposed Solution



Functional Coverage Flow



Contributions

• Easy coverage definition
• Predefined bin type for frequently used bins
• User-defined iterator for complicated bins
• Coverpoint can be defined using OOP

• Python-driven functional coverage collection
• SystemVerilog coverage layer is generated from Python coverage model and 

fully controlled by Python testbench
• SystemVerilog knowledge not required



Define Coverage Model: Predefined Bin Types

Predefined 
Coverage Type Python Definition Generated 

SystemVerilog Coverage

Exponential

cp_exp =
CoverPoint(BinExp(16))

cp_exp: coverpoint signal {
bins bin_0 = {0};
bins bin_1_1 = {[1:1]};
bins bin_2_3 = {[2:3]};
bins bin_4_7 = {[4:7]};
bins bin_8_15 = {[8:15]};

}

Bitwise
cp_bitwise =

CoverPoint(BinBitwise(4))
cp_bitwise_0: coverpoint signal[0];
cp_bitwise_1: coverpoint signal[1];
cp_bitwise_2: coverpoint signal[2];
cp_bitwise_3: coverpoint signal[3];

Transition

cp_transition =
CoverPoint(BinTransition(
(2,5), (2,10), (3,8)
))

cp_onehot: coverpoint signal {
bins bin_2_5 = (2=>5);
bins bin_2_10 = (2=>10);
bins bin_3_8 = (3=>8);

}

Predefined 
Coverage Type Python Definition Generated 

SystemVerilog Coverage

Range
cp_range_0 =
CoverPoint(BinRange(64))

cp_range: coverpoint signal {
bins bin_0_63[64] = {[0:63]};

}

Uniform
cp_uniform =

CoverPoint(BinUniform(
0, 128, num=5))

cp_uniform: coverpoint signal {
bins bin_0_127[5] = {[0:127]};

}

Enum

class MyEnum(IntEnum):
STATE_0 = 0b00
STATE_1 = 0b01
STATE_2 = 0b10
STATE_3 = 0b11

cp_enum =
CoverPoint(BinEnum(MyEnum))

cp_enum: coverpoint signal {
bins STATE_0 = {0};
bins STATE_1 = {1};
bins STATE_2 = {2};
bins STATE_3 = {3};

}



Define Coverage Model: User-defined Iterator Types

• Complicated coverage bins can be easily expressed



Implementing Coverage Collector

• connect
Connect Python coverage instances to 
SystemVerilog layer during initialization

• assign (<=)
Assign values to coverpoints

• sample
Trigger a sampling event



How to implement coverage collector
• connect

connect coverage instance to System 
Verilog when simulation launched.



How to implement coverage collector

• assign (<=)
Assign values to coverpoints



How to implement coverage collector

• sample
sampling by flip sampling trigger signal



Results

• Functional coverage closure of FuriosaAI's latest AI chip
• Productivity increase by 4 ~ 20 times in terms of line of codes

# of Covergroups # of Bins Python code
lines

SystemVerilog
code lines

Block A 152 7294 395 6939

Block B 22 10854 310 1238

Block C 12 14900 64 1091



Conclusion

• Propose functional coverage library in Python testbench.
• The library has the programmability of python 

and the rich functional coverage features of SystemVerilog
• We successfully close functional coverage using the library



Resources

• Cocotb extension for functional coverage closure
• https://github.com/furiosa-ai/cocotbext-fcov

• Examples
• https://github.com/furiosa-ai/dvcon2024-functional-coverage-closure-with-python

https://github.com/furiosa-ai/cocotbext-fcov
https://github.com/furiosa-ai/dvcon2024-functial-coverage-closure-with-python


Questions?


