
Functional Coverage Closure with Python
Seokho Lee, Youngsik Kim, Suhyung Kim,

Jeong Ki Lee, Wooyoung Choe, Minho Kim

Table of Contents

• Backgrounds
• Python Testbench and Python extension libraries

• Motivation
• Problems of Coverage Closure in Python Testbench

• Proposed Solution
• Overall flow & how to guides

• Conclusion

Design Verification using Python

• Python extension libraries for verification
• Cocotb: coroutine based cosimulation testbench environment using Python
• PyVSC: random verification-stimulus generation

• Testbenches can be written and run by Python thanks to open-source
Python libraries

Design Verification using Python

• In FuriosaAI, Most block-level testbenches are written in Python

Master Agent

Python Testbench

Scoreboard

Logic Simulator

DUT

VPI
Test Sequence Master Agent

VPI
Master AgentSlave Agent

(cocotb)

(cocotb)

Problems of Coverage Closure in Python (1/2)

Case 1) Measure coverage by existing Python coverage library
• Separate func coverage DB not compliant with legacy coverage analysis tools
• Python coverage libraries don't fully support SystemVerilog coverage features

Master Agent

Python Testbench

Scoreboard

Logic Simulator

DUT

VPI
Test

Sequence
Master Agent

VPI
Master AgentSlave Agent

Coverage
Collector

Functional
Coverage DB

Code
Coverage DB

Problems of Coverage Closure in Python (2/2)

Case 2) Measure coverage by SystemVerilog + Logic Simulator
• Seperate SystemVerilog testbench with monitors and coverage collectors
• Both Python and SystemVerilog/UVM skills required

Master Agent

Python Testbench

Scoreboard

Logic Simulator

DUT

VPI
Test

Sequence
Master Agent

VPI
Master AgentSlave Agent

Code + Functional
Coverage DB

SystemVerilog
TestBench

MonitorMonitor

Coverage
Collector

Our Proposed Solution

• Python testbench has coverage models and coverage collectors
• SystemVerilog coverage layer generates functional coverage database
• At sample, collected coverage data is transferred to SystemVerilog coverage layer

Master Agent

Python Testbench

Scoreboard

Logic Simulator

DUT

VPI
Test

Sequence
Master Agent

Master AgentSlave Agent

Code + Functional
Coverage DB

Coverage
Collector

SystemVerilog
Coverage LayerVPI

Master Agent

Python Testbench

Scoreboard

Logic Simulator

DUT
Test

Sequence
Master Agent

Master AgentSlave Agent

Code + Functional
Coverage DB

Coverage
Collector

SystemVerilog
Coverage LayerCoverage

Model
Connection

Generation

• Defining a coverage model in python allows the library to connect python with
SystemVerilog
• Define coverage by SystemVerilog seamlessly

Our Proposed Solution

Functional Coverage Flow

Contributions

• Easy coverage definition
• Predefined bin type for frequently used bins
• User-defined iterator for complicated bins
• Coverpoint can be defined using OOP

• Python-driven functional coverage collection
• SystemVerilog coverage layer is generated from Python coverage model and

fully controlled by Python testbench
• SystemVerilog knowledge not required

Define Coverage Model: Predefined Bin Types

Predefined
Coverage Type Python Definition Generated

SystemVerilog Coverage

Exponential

cp_exp =
CoverPoint(BinExp(16))

cp_exp: coverpoint signal {
bins bin_0 = {0};
bins bin_1_1 = {[1:1]};
bins bin_2_3 = {[2:3]};
bins bin_4_7 = {[4:7]};
bins bin_8_15 = {[8:15]};

}

Bitwise
cp_bitwise =

CoverPoint(BinBitwise(4))
cp_bitwise_0: coverpoint signal[0];
cp_bitwise_1: coverpoint signal[1];
cp_bitwise_2: coverpoint signal[2];
cp_bitwise_3: coverpoint signal[3];

Transition

cp_transition =
CoverPoint(BinTransition(
(2,5), (2,10), (3,8)
))

cp_onehot: coverpoint signal {
bins bin_2_5 = (2=>5);
bins bin_2_10 = (2=>10);
bins bin_3_8 = (3=>8);

}

Predefined
Coverage Type Python Definition Generated

SystemVerilog Coverage

Range
cp_range_0 =
CoverPoint(BinRange(64))

cp_range: coverpoint signal {
bins bin_0_63[64] = {[0:63]};

}

Uniform
cp_uniform =

CoverPoint(BinUniform(
0, 128, num=5))

cp_uniform: coverpoint signal {
bins bin_0_127[5] = {[0:127]};

}

Enum

class MyEnum(IntEnum):
STATE_0 = 0b00
STATE_1 = 0b01
STATE_2 = 0b10
STATE_3 = 0b11

cp_enum =
CoverPoint(BinEnum(MyEnum))

cp_enum: coverpoint signal {
bins STATE_0 = {0};
bins STATE_1 = {1};
bins STATE_2 = {2};
bins STATE_3 = {3};

}

Define Coverage Model: User-defined Iterator Types

• Complicated coverage bins can be easily expressed

Implementing Coverage Collector

• connect
Connect Python coverage instances to
SystemVerilog layer during initialization

• assign (<=)
Assign values to coverpoints

• sample
Trigger a sampling event

How to implement coverage collector
• connect

connect coverage instance to System
Verilog when simulation launched.

How to implement coverage collector

• assign (<=)
Assign values to coverpoints

How to implement coverage collector

• sample
sampling by flip sampling trigger signal

Results

• Functional coverage closure of FuriosaAI's latest AI chip
• Productivity increase by 4 ~ 20 times in terms of line of codes

of Covergroups # of Bins Python code
lines

SystemVerilog
code lines

Block A 152 7294 395 6939

Block B 22 10854 310 1238

Block C 12 14900 64 1091

Conclusion

• Propose functional coverage library in Python testbench.
• The library has the programmability of python

and the rich functional coverage features of SystemVerilog
• We successfully close functional coverage using the library

Resources

• Cocotb extension for functional coverage closure
• https://github.com/furiosa-ai/cocotbext-fcov

• Examples
• https://github.com/furiosa-ai/dvcon2024-functional-coverage-closure-with-python

https://github.com/furiosa-ai/cocotbext-fcov
https://github.com/furiosa-ai/dvcon2024-functial-coverage-closure-with-python

Questions?

