2024

DESIGN AND VERIFICATION ™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Functional Coverage Closure with Python

Seokho Lee, Youngsik Kim, Suhyung Kim,
Jeong Ki Lee, Wooyoung Choe, Minho Kim

Table of Contents

* Backgrounds
* Python Testbench and Python extension libraries

* Motivation
* Problems of Coverage Closure in Python Testbench

* Proposed Solution
e Overall flow & how to guides

* Conclusion

Design Verification using Python

* Python extension libraries for verification
* Cocotb: coroutine based cosimulation testbench environment using Python
* PyVSC: random verification-stimulus generation

* Testbenches can be written and run by Python thanks to open-source
Python libraries

focotb PyVSC

Design Verification using Python

* In FuriosaAl, Most block-level testbenches are written in Python

h VPI
_________ » Master Agent
u Test Sequence at (cocotb)
DUT

VPI
(cocotb)

A 4

Scoreboard > S Slave Agent -

Python Testbench Logic Simulator

DESIGN AND \Q;A:N ™~

Problems of Coverage Closure in Python (1/2)

Case 1) Measure coverage by existing Python coverage library
* Separate func coverage DB not compliant with legacy coverage analysis tools
* Python coverage libraries don't fully support SystemVerilog coverage features

- VPI
Test oo » Master Agent >
Sequence ok
Functional | VP buT Code
Coverage DB Scoreboard 1—15-;"- Slave Agent Coverage DB

Coverage |4 _

Collector | ¥

Python Testbench Logic Simulator

S —

Problems of Coverage Closure in Python (2/2)

Case 2) Measure coverage by SystemVerilog + Logic Simulator

» Seperate SystemVerilog testbench with monitors and coverage collectors
e Both Python and SystemVerilog/UVM skills required

L Code + Functional
H VPI . i Coverage DB
Test foeeees » Master Agent > Monitor
Sequence L W ‘
DUT Coverage @

|] VPI Collector -
Scoreboard <] Slave Agent SystemVerilog
TestBench
Python Testbench Logic Simulator

2024

DESIGN AND VERIEICATION™

Our Proposed Solution

\ 4

Test I VPI Code + Functional

I| est pes » Master Agent C DB

Sequence | [ITTL DUT overage
Scoreboard 1 Slave Agent @

. SystemVerilog
Coverage 3 VPI | Coverage Layer
Collector >
Python Testbench Logic Simulator

* Python testbench has coverage models and coverage collectors

» SystemVerilog coverage layer generates functional coverage database
e At sample, collected coverage data is transferred to SystemVerilog coverage layer

DESIGN AND \Q;A:N ™~

CONFERENCE AND EXHIBITION

Our Proposed Solution

| ' | ma)
| %eneratlo h SystemVerilog
Coverage < Coverage |--|-------- - —» . Coverage Layer
Collector Model < 1
onnection
Python Testbench Logic Simulator

* Defining a coverage model in python allows the library to connect python with
SystemVerilog

* Define coverage by SystemVerilog seamlessly

DESIGN AND \Q;N ™~

CONFERENCE AND EXHIBITION

Definition

Functional Coverage Flow

Generation

Python
Coverage Model

* CoverGroup
e CoverPoint
e Bin Definition

my_bin = BinSingle(0)

class MyCg(CoverGroup):
my_cp = CoverPoint(my_bin)

class MyCm(CoverageModel):
my_cg =MyCg()

Auto-generated
SystemVerilog

wire my_cp;

covergroup my_cg;
coverpoint my cp
{bins bin_0={0};}

Auto-generated Markdown

Coverpoint Width BinType # of Bins

> Coverage

my_cp [0:0] Single 1

Measurement

Python
Testbench

Coverage
Collector

System Verilog

Analysis
& Review

Review

T

Logic
Simulator

=

Coverage DB

DESIGN AND @N ™~

DVCON

CONFERENCE AND EXHIBITION

Contributions

* Easy coverage definition
* Predefined bin type for frequently used bins
* User-defined iterator for complicated bins
* Coverpoint can be defined using OOP

* Python-driven functional coverage collection

* SystemVerilog coverage layer is generated from Python coverage model and
fully controlled by Python testbench

* SystemVerilog knowledge not required

1P ‘\\ = RIEICATION ™
L L ~ S~ —
erd S

: } ‘ ~ 0 10 %N 0 % NN N OV N N NN NN N NN N N DY VNN NN N\ T T T T/ T CONFERENCE ANDEXHIBITION
e

Define Coverage Model: Predefined Bin Types

Predefined o Generated Predefined N Generated
Python Definition) C T Python Definition SvstemVerilog C
Coverage Type SystemVerilog Coverage overage 'ype ystémVerilog Loverage
cp_range_0 = cp_range: coverpoint signal { C(pigiz?P_cﬁnt(BinExp(m)) cEi_nesti.nco(;/cir{poo}l'nt signal {
Range CoverPoint(BinRange(64)) }bms bin_0_63[64] = {[0:63]}; bins bin:l_l - {[:1]);
Exponential bins bin_2_3 = {[2:3]};
cp_uniform = cp_uniform: coverpoint signal { bins bin_4_7 = {[4:7]};
Uniform CoverPoint(BinUniform(bins bin_0_127[5] = {[0:127]}; bins bin_8_15 = {[8:15]};
0, 128, num=5)) })
cp_bitwise = cp_bitwise_0: coverpoint signal[0];
class MyEnum(IntEnum): cp_enum: coverpoint signal { p_brtwi . e P I W! . verp I !g ;].
STATE 0 = 0b0O bins STATE 0 = {O}; Bitwise CoverPoint(BinBitwise(4)) cp_b!tw!se_l. coverpo!nt s!gnal[l],
STATE_l _ 0bO1 bins STATE_l _ {1}'_ cp_bitwise_2: coverpoint signal[2];
STATE—2 — 0b10 bins STATE_Z _ {2}'_ cp_bitwise_3: coverpoint signal[3];
Enum STATE 3 = 0b11 bins STATE 3 = i3 ’ cp_transition = cp_onehot: coverpoint signal {
o= } ins _3={3} CoverPoint(BinTransition(bins bin_2_5 = (2=>5);
Transition (2,5), (2,10), (3,8) bins bin_2_10 = (2=>10);
ch_enum = bins bin_3_8 = (3=>8);
CoverPoint(BinEnum(MyEnum))) } -3-8=()

DESIGN AND VRCB;N ™

DVCON

CONFERENCE AND EXHIBITION

Define Coverage Model: User-defined Iterator Types

* Complicated coverage bins can be easily expressed

def narrow_strobe(bus_byte_width):
for i in range(log2Ceil(bus_byte_width)):
size =1 << i
for j in range(bus_byte_width):
strobe = ((1 << size) - 1) << (j * size)
yield (f"en{sizel}byte_{hex(strobe)}", strobe)

cp_strobe = CoverPoint(narrow_strobe(8))

cp_strobe: coverpoint cg_axi_narrow_cp_strobe {

bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
bins

enlbyte_0x1 = {'bl};
enlbyte_0x2 = {'b10};
enlbyte_0x4 = {'b100};
enlbyte_0x8 = {'b1000};
enlbyte_0x10 = {'b10000};

enlbyte_0x20
enlbyte_0x40 = {'b1000000};
enlbyte_0x80 = {'b10000000};
en2byte_0x3 = {'b11l};
en2byte_0xc = {'b1100};
en2byte_0x30 = {'b110000};
en2byte_0xc® = {'b11000000};
endbyte_0xf = {'b1111};
endbyte_0xf0 = {'b11110000};

{'b100000};

DESIGN AND Q;N ™

DVCON

CONFERENCE AND EXHIBITION

Implementing Coverage Collector

° connect] class MyCoverageCollector:
Connect Python coverage instances to def __init__(self, dut):
. . STEUNT . self.my_cov = MyCoverageModel()
SystemVerllog |ayer durlng initialization cov_inst = getattr(dut, self.my_cov.sv_instname)

connect python coverage objects
self.my_cov.connect(cov_inst)

’ aSSI.gn (<=)] def collect_coverage(self, coverpoint_value):
Assign values to coverpoints # assign sampling values

self.my_cov.my_cg.my_cp <= coverpoint_value

trigger sampling
self.my_cov.my_cg.sample()

* sample
Trigger a sampling event

DESIGN AND \Q;A:N ™~

CONFERENCE AND EXHIBITION

How to implement coverage collector

°* connect
. class MyCoverageCollector:
connect coverage instance to System def __init__(self, dut):
Verilog when simulation launched. cov_inst = getattr(dut, self.my_cov.sv_instname)

self.my_cov = MyCoverageModel()
module my_cov ();
wire [1:0] my_cg_my_cp il
wire my_cg_sample s
covergroup my_cg;
my_cp: coverpoint my_cg_
bins bin_0 = {0}; bins bin_
bins bin_2 = {2}; bins bin_3 =
}
endgroup : my_cg
my_cg my_cg_inst = new;
always @(my_cg_sample) begin
my_cg_inst.sample();
end
endmodule

connect python coverage objects
self.my_cov.connect(cov_inst)

class MyCoverageModel(CoverageModel):
class MyCoverGroup(CoverGroup):
my_cp = CoverPoint([@, 1, 2, 3])
my_cg = MyCoverGroup()

my_cov = MyCoverageModel()

DESIGN AND @N ™~

DVCON

CONFERENCE AND EXHIBITION

How to implement coverage collector

¢ aSSign (<=) class MyCoverageCollector:
. . def __init__(self, dut):
ASSIgn values to COVEprlntS

cov_inst = getattr(dut, self.my_cov.sv_instname)

self.my_cov = MyCoverageModel()
module my_cov ();
|wire [1:0] my_cg_my_cp;
wire my_cg_sample;
covergroup my_cg;
my_cp: coverpoint my_cg_my_cp {
bins bin_6 = {0}; bins bin_1 = {1};
bins bin_2 = {2}; bins bin_3 = {3};

connect python coverage objects
self.my_cov.connect(cov_inst)

def collect_coverage(self, coverpoint_value):
assign sampling values

} self.my_cov.my_cg.my_cp <= coverpoint_value

endgroup : my_cg
my_cg my_cg_inst = new;
always @(my_cg_sample) begin
my_cg_inst.sample();
end
endmodule

DESIGN AND @N ™~

DVCON

CONFERENCE AND EXHIBITION

How to implement coverage collector

’ Sample class MyCoverageCollector:
L] L] L] Y . f . . f :
Sampllng by ﬂlp samplmg trigger s|gna| def __init__(self, dut)

cov_inst = getattr(dut, self.my_cov.sv_instname)

self.my_cov = MyCoverageModel()
module my_cov ();

wire [1:0] my_cg_my_cp; # connect python coverage objects

wire my_cg_sample; self.my_cov.connect(cov_inst)
covergroup my_cg,
my_cp: coverpoint my_cg_my_cp {

- - - - def collect_coverage(self, coverpoint_value):
bins bin_6 = {0}; bins bin_1 = {1};

bins bin_2 = {2}; bins bin_3 = {3}; # assign sampling values _
} self.my_cov.my_cg.my_cp <= coverpoint_value
endgroup : my_cg
my_cg my_cg_inst = new; # trigger sampling
always @(my_cg_samplejg-hegin self.my_cov.my_cg.sample()
my_cg_inst.sample();
end
endmodule

DESIGN AND \Q;\ON ™~

CONFERENCE AND EXHIBITION

Results

* Functional coverage closure of FuriosaAl's latest Al chip
* Productivity increase by 4 ~ 20 times in terms of line of codes

of Covergroups # of Bins Python code SystemVerilog
lines code lines
Block A 152 7294 395 6939
Block B 22 10854 310 1238
Block C 12 14900 64 1091

DESIGN AND VRCF_I(_:;N ™

Conclusion

* Propose functional coverage library in Python testbench.

* The library has the programmability of python
and the rich functional coverage features of SystemVerilog

* We successfully close functional coverage using the library

' / - ’. \ \‘\\ DESIGN AND VERIEICATION ™
~ = § \ 0 VU080 VOOV N0V OV N N U U N U N L N Ny VNNV T T T T—_ TCONFERENCE ANDEXHIBITION
~_SYSTEM 1A - o~

Resources

* Cocotb extension for functional coverage closure
* https://github.com/furiosa-ai/cocotbext-fcov

* Examples
* https://github.com/furiosa-ai/dvcon2024-functional-coverage-closure-with-python

DESIGN AND \Q;;N ™~

DVGCON

https://github.com/furiosa-ai/cocotbext-fcov
https://github.com/furiosa-ai/dvcon2024-functial-coverage-closure-with-python

Questions?

