Arithmetic Overflow Verification 2024

DESIGN AND VERIFICATION™

acce//era using Formal LINT DVCON

. CONFERENCE AND EXHIBITION
Kaiwen Chin, Esra Sahin Basaran, Kranthi Pamarthi

SYSTEMS INITIATIVE

Renesas Electronics
MARCH 4-7, 2024

Arithmetic Overflow Verification Challenge Arithmetic Logic Category (cont’d)

« Arithmetic overflow verification: » Formal LINT = Structural LINT + Formal capability * Implicit Signed Logic

* Unsigned arithmetic + Auto-generated SystemVerilog Assertions for Formal * The design implements signed arithmetic
* Signed arithmetic Verification * No “signed” keyword. Variable signedness is implied by its consuming logic.

« Formal LINT looks promising + Manual sign-extension for implicit signed variable must be used for correctness
* Part-select syntax could be used for readability
* Manual zero-padding at MSBs could be used for readability (for unsigned variables)

» Traditional methods can be inefficient:
« Dynamic simulation: Hard to be exhaustive * But...
+ Structural LINT: Lots of false negatives * The paper provides its prerequisite
*/Example
wire [3:0]%FUL_UlA; // Variable is intended to be unsigned.
H H H wire [3:0] [FUL_S1B; // Variable is intended to be signed but not declared explicitly.
Arithmetic Logic Category wire [4:0] ¥ STA = FUL ULA & (UL S18[3],70L S1B);
wire [4:0] ¥ S1B = {1°b0,FUL U1A} + {FUL_ 2], FU
wire [4:0] ¥ §1C = {1°b0,FUL U1A[3:0]} +|{FUL Sl

i 1B[3:0]1};
* Unsigned Logic

* The design implements unsigned arithmetic

* No “signed” keyword

* “Part select syntax” could be used for readability

*/Manual “zero-padding™ at MSBs could be used for readability

* Explicit Signed Logic

* The design implements signed arithmetic

* Signed variables are declared using “signed” keyword

* No part-select syntax for explicit signed variables

* No manual sign-extension for explicit signed variables
. F /

Example))) « Example

wire [3:0] \FUL_U1A, FUL U1B; // Variables are intended to be unsigned. wire [3:0] FUL UlA; // Variable is intended to unsigned.
wire [4:0] Y_UlA = FUL_U1A + FUL_U1R: wire [3:0] FUL_ULB; // Variable is intended to unsigned.
wire [4:0] ¥ UlB = FUL U1A[3:0] + FUL U1B[3:0]; wire signed)[3:0] FUL S1C; // Variable is intended to signed and declared explicitly.
wire [4:0] Y UIC = {1'h0,FUL_UIAI3T0TT ¥+ [I"BU,FUL U1B[3:0]}; wire [3:0] FUL_sS1D; // Variable is intended to signed and declared explicitly.

wire [4:0])Y ULD = [1'b0,FUL U1A} + {1‘b0,FUL U1B}; wire * {:”% ifzi‘; = ;’éti’ig + :&Jﬁ"
wire 0 = sic + S1D;

Formal LINT for Unsigned Logic Formal LINT is not for all of them!
« Formal LINT proves Y_U3A has no overflow issue. * The key issue is variable’s signedness information

output [3:0] Y U3A:
input [3:0] FUL_UlA, FUL_U1B; Pitfalls Formal LINT limitation

wire [3:0] HLF_ULA = (FUL_U1A > 7) ? 7 FUL_UlA; P - - - -
wire [3:0] HLF UIB = (FUL UIB > 7) ? 7 : FUL UlB; Limitation: Lack of variable signedness information.
assign Y U3A = HLF UlA + HLF U1B; None * Formal LINT currently may not accurately analyze it.
* Work-in-progress for EDA vendors

Formal LINT for Explicit Signed Logic Many | Noshowstopper for Formal LNT
Explicit Signed Logic * Complementary checks required

(show you later) Work-in-progress for EDA vendors \ Formal LINT is most

* Formal LINT proves Y_S3F has no overflow issue,

o promising for these
output signed [3:0] Y_S3F: i No limitation / o
input signed [3:0] FUL_S1A, FUL_S1B; nsigned Logic None Formal LINT is fully capable of its verification pes.
wire signed [3:0] HLF_S1A, HLF S1B;

assign HLF S1A = (FUL SIA > 3) 2 3 : (FUL S1A < -4) 2 -4 : FUL S1a;
assign HLF S1B = (FUL S1B > 3) ? 3 : (FUL S1B < -4) 2 -4 : FUL S1B;

assign Y S3F = HLF S1A + HLF S1B; Pitfall in EXp“Cit Slgned Logic

Formal LINT for Implicit Signed Logic + Signed-to-unsigned conversion: Mixture of signed and unsigned in equation
. | both d iened and fl wire [3:0] FUL_UlA;
Formal LINT treat both operands as unsigned and flag error. wire signed [370] ROL_S1A_ FUL_SI1R;
output [3:0] Y_SCf; wire [4:0] Y U1B =| FUT UlA]+[FUL SlA]
input [3:0] FUL Sle, FUL S1f; - — -
wire [3:0] HLF Sle = (FUL_Sle([3:2]==2'b01) ? 4'b0011 : . . R . .
(FUL Sle[3:2]==2'b10) ? 4'b1100 : FUL Sle[3:0] : Unsigned variable Signed variable converted into

wire [3:0] HLF_S1f = (FUL _S1£[3:2]==2'b01) ? 4'b0011 : . . .

- (FUL S1f[3:2]==2'b10) ? 4'b1100 : FUL S1f[3:0] ; unsigned during evaluation of the
assign Y _SCf[3:0] = {HLF_Sle[3], HLF Sle[3:0]} + {HLF_S1f[3], HLF_S1f£[3:0]}; equation

// Formal LINT doesn’t know the operands are signed in the design intention.

Pitfall in Explicit Signed Logic (cont’d) Pitfall in Explicit Signed Logic (cont’d)

« Signed-to-unsigned conversion: Result of concatenation is treated as unsigned * Interim result overflow: “B+C” evaluated as 4-bit expression

wire signed [3:0] S4b A, S4b B; wire :0] B = 4'b0011; = Overflow already before shift

wire signed [4:0] S5b_Y =({S4b_A[3],54b_A}] + [(54b_B[3],54b_B}): wire [3:0] C = 4'b1ll

- — - - - wire :0] Y2 = >>> 1; // Y2 = 4'b0000

* Signed-to-unsigned conversion: Part-select changes the variable into unsigned wire 01 ¥4 = (/! 3(4 - ,},31000)

wire signed [3:0] S4b_A, S4b B; (B+C)/2” evaluated as 4-bit

wire signed [4:0] S5b X =[S4b _A[3:0]]+ [s4b B[3:0]); expression. Result is correct.
They will be automatically zero-padded instead of sign-extended * Formal LINT should be accompanied by pitfall checks.

* We evaluated EDA tools from two vendors:

* Bad Sign Casting: Example: If A_U4bis “+15”, Ssigned(A_U4b) oA e < e
w]l_re [3_0] AﬁUllb, will be iﬂt&‘rpreted as “-1”. ec] ems_ . equires INT type ‘ommercial Solutions
wire signed [3:0] B S4b; Arithmetic overflow]
. . Formal Covered
wire signed :0] ¥ S6b = A U4b + B S4F; // Signed-to-unsigned conversion (LHS variable is not wide enough to hold result from RHS equation)
- - - Pitfall checks Required LINT type ‘Commercial Solutions
o s .) Ah - N N Signed-to- Due to mixed signed and unsigned operands in equation | Structural Covered
wire signed 0] ¥ ¢ $signed(A Udb)| + B S4b; // Bad sign casting unsigned Due fo part-select Structoral Work in brosress
conversion Due to concatenation Structural ‘Work in progress
Bad sign-casting Formal ‘Work in progress
Solution: Zero-padding before sign-casting Bad signed constant Structural Work in progress
P = Te g Operator precedence of arithmetic shift wa wa
Tools won't know designer’s intention)
Interim result overflow Formal ‘Work in progress

wire signed :0] Z_S6b =[55iqned([1’bU,A_U4b))] + B_S54b; [/ Good sign casting

(Reference: Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 — Opportunities and Hazards.” in DVCON 2005

‘ Bad agqed constant: . Use a signed constantto keep
wire signed [3:0] A S4b; A_S4b as signed. But “4’sd8” REFERENCES
wire signed [5:0] Y_Séb = A S4b + will be interpreted as “-8". [1] "IEEE Standard for Verilog Hardware Description Language." in IEEE Std 1364-2005 (Revision of IEEE Std 1364-
wire signed [5:0] Z S6b = A S4b + -5 sd8 e b rio ; 2001) . vol., no.. pp.1-590. 7 April 2006, doi: 10.1109/IEEESTD.2006.99495.
- This is the right way [2] "IEEE Standard for SystemVerilog--Unified Hardware Design. Specification, and Verification Language." in IEEE Std
Value range of 4-bit signed operand : +7 ~ -8 1800-2017 (Revision of IEEE Std 1800-2012) . vol., no., pp.1-1315, 22 Feb. 2018, doi: 10.1109/IEEESTD.2018.8299595
Value range of 5-bit signed operand : +15 ~-16 [3] Dr. Greg Tumbush, “Signed Arithmetic in Verilog 2001 — Opportunities and Hazards,” in DVCON 2005

RENESAS

Special thanks to: Cadence, Synopsys

© Accellera Systems Initiative

	Slide 1

