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Abstract- The integration of LINT and Formal Verification presents promising opportunities, especially in addressing 

arithmetic overflow verification. Formal LINT tools enhance design quality by efficiently identifying genuine design 

issues, albeit requiring specific coding practices for signed arithmetic operations. This paper proposes an RTL coding 

style for leveraging Formal LINT tools in arithmetic overflow detection, underscores the advantages of Formal LINT 

over Structural LINT, and outlines future directions for this verification solution. 

I.   INTRODUCTION 

Arithmetic overflow poses a critical challenge in the realm of digital logic design. It occurs when an arithmetic 

operation's result exceeds the representational capacity of a given number of bits. This problem can arise during 

operations involving binary numbers, wherein the result necessitates more bits than what is available in the storage 

medium – e.g.: register or memory space, etc.  When the calculation results in an extra digit, the most significant bit 

(MSB) is truncated or lost, leading to erroneous or unexpected values. 

The issue of arithmetic overflow is not confined to specific arithmetic operations; it can manifest in addition, 

subtraction, multiplication, and division, irrespective of whether these operations involve signed or unsigned numbers. 

Therefore, it is crucial to avoid arithmetic overflow to uphold system accuracy and functionality in digital logic design.  

However, detection of arithmetic overflow presents formidable challenges, particularly in the context of dynamic 

simulation and structural LINTing methods. Dynamic simulation involves emulating the behavior of a digital system 

over time using test vectors to manipulate inputs and observe outputs. Yet, it proves arduous to create test vectors that 

encompass all conceivable input combinations that could potentially lead to overflow. The vast input space of digital 

systems renders it impractical to perform exhaustive testing. Furthermore, detecting overflow bugs through dynamic 

simulation can be time-intensive, especially as system size and complexity increase, potentially rendering verification 

efforts impractical. 

Structural LINTing, which primarily scrutinizes structural aspects like syntax, connectivity, and design rule 

violations, is another method for detecting overflow issues. However, it comes with significant limitations. While the 

capability can flag potential overflow concerns by analyzing design structures, it is prone to generating a substantial 

number of false negatives. Structural analysis not only requires considerable amount of time to isolate real issues, but 

also manual assessment process could be very tedious and error prone. Structural LINTing also lacks the capacity to 

delve into the intricacies of data paths and arithmetic operations, instead it solely relies on variable width information 

at the RTL level. 

This paper proposes adoption of Formal LINTing technology as a robust solution to detect arithmetic overflow 

issues. Formal LINTing leverages formal verification techniques to scrutinize a design's behavior, enabling it to 

identify overflow conditions that might evade dynamic simulation. Formal verification employs mathematical models 

to analyze all potential input combinations exhaustively. Therefore, it offers a highly automated and efficient 

verification process. Unlike Structural LINT, Formal LINTing tools detect potential arithmetic overflow spots and 

prove mathematically whether overflow conditions can happen functionally, achieving higher productivity and 

accuracy.  

 Even though Formal LINTing is powerful and efficient, it is not without its limitations. Complexity of arithmetic 

logics, in other words “cone of influence” can introduce additional challenges during Formal LINTing. There are 

techniques available to address such challenges, but those lie out of the scope of this paper. On the other hand, 

designers might need to adhere to specific coding guidelines to facilitate more effective tool analysis, specifically for 

signed arithmetic logics. Such coding guideline examples will be explored and proposed further in this paper. 

Verilog-2001/2005 and SystemVerilog-2017 provides syntax and rules for explicit implementation of signed 

arithmetic logic. These syntax and rules are essential for accurate design behavior analysis using current Formal LINT 

tools. Without them, Formal LINT tools may not have enough information about designer’s intention. However, our 

observations indicate that not all designers are well-versed in the intricate details of this syntax. This paper endeavors 

to bridge this knowledge gap by offering a concise summary and practical examples of signed arithmetic syntax, rules, 



 

 

and potential pitfalls based on Verilog-2001/2005. Familiarity with these intricacies is paramount when employing 

Formal LINT tools for arithmetic overflow verification. 

In this paper, we categorize different RTL coding styles based on their compatibility with Formal LINT tools. We 

will illustrate these categories with examples that showcase the limitations of Structural LINT tools and the advantages 

of their Formal LINT counterparts. Additionally, we will present a set of arithmetic RTL coding guidelines to ensure 

both correct code functionality and effective analysis by Formal LINT tools. Lastly, we will provide a summary of 

our evaluation of Formal LINT tools in the context of arithmetic overflow verification, offering insights into their 

effectiveness and potential limitations. 

II.   GLOSSARY 

Glossary Description 

Dynamic simulation It is a verification method that relies heavily on simulation patterns. Verification coverage is directly related to 
the completeness of simulation patterns. 

Explicit sign extension It is a coding style where the variable’s MSB is explicitly repeated to form a wider variable with same 

signedness. For example: 

{A[3], A[3:0]} 

{A[3], A[3], A[3:0]} 

{{2{A[3]}}, A[3:0]} 

Explicit signed variable Variable is explicitly declared as signed. 

Formal LINT It is a methodology that combines Structural LINT with Formal Verification technology. In Formal LINT, it 
detects potential design risks structurally, but then automatically generates Formal Verification rules (assertions) 

to prove functionally whether the risks are real issues or not if structurally it is possible to make that judgement 

Implicit sign extension Automatic sign extension is executed by simulator and synthesizer based on the context and the rules in Verilog 

and SystemVerilog LRM. 
Implicit sign extension means a coding style in which the variable can be automatically extended based on the 

variable’s signedness. If the variable is unsigned, it would be automatically extended by adding 0’s to its MSBs. 

If the variable is declared as signed and there is no signed-to-unsigned conversion, the variable would be 
automatically extended by repeating its MSB. 

Implicit signed variable Variable is declared with default signedness “unsigned”. However, it is used as a signed variable in the context. 

For example, it is sign-extended like this: 
{A[3], A[3:0]} 

LHS Left hand side 

RHS Right hand side 

Structural LINT 

(Or simply “LINT”) 

It is a methodology that performs analysis on RTL code structure to conservatively report potential risks that 

could lead to design failures and issues in implementation flow. It analyzes RTL code structurally but not 

functionally, so it tends to generate false negatives. 

 

III.   CODING STYLES FOR ARITHMETIC LOGICS 

In this paper, we focus on three example coding styles for arithmetic logics. 

A. Unsigned Arithmetic Logics 

Example1: 

wire [3:0] FUL_U1A, FUL_U1B; // Variables are intended to be unsigned. 

wire [4:0] Y_U1A = FUL_U1A + FUL_U1B; 

wire [4:0] Y_U1B = FUL_U1A[3:0] + FUL_U1B[3:0]; 

wire [4:0] Y_U1C = {1’b0,FUL_U1A[3:0]} + {1’b0,FUL_U1B[3:0]}; 

wire [4:0] Y_U1D = {1’b0,FUL_U1A} + {1’b0,FUL_U1B}; 

All variables in “Example1” are unsigned. “Y_U1A~D” implements the same equation with slightly different 

coding styles. This coding style includes following features: 

• The design implements unsigned arithmetic 

• No “signed” keyword 

• Explicit part select syntax could be used for readability 

• Explicit MSB zero-padding could be used for readability 

B. Implicit Signed Variable Coding Style 

Example2: 

wire [3:0] FUL_U1A; // Variable is intended to be unsigned. 

wire [3:0] FUL_S1B; // Variable is intended to be signed but not declared explicitly. 



 

 

wire [4:0] Y_S1A = FUL_U1A + {FUL_S1B[3],FUL_S1B}; 

wire [4:0] Y_S1B = {1’b0,FUL_U1A} + {FUL_S1B[3],FUL_S1B}; 

wire [4:0] Y_S1C = {1’b0,FUL_U1A[3:0]} + {FUL_S1B[3],FUL_S1B[3:0]}; 

All variables are declared as unsigned in “Example2”. However, “FUL_S1B” is a signed variable in designer’s 

intention. Therefore, FUL_S1B is manually sign-extended to implement correct logics. This coding style includes 

following features: 

• The design implements signed arithmetic 

• No “signed” keyword 

• Explicit part-select syntax could be used for readability 

• Explicit MSB zero-padding could be used for readability (for unsigned variables) 

• Explicit sign-extension for implicit signed variable must be used for correctness 

 

C. Explicit Signed Variable Coding Style 

Example3: 

wire        [3:0] FUL_U1A; // Variable is intended to be unsigned. 

wire        [3:0] FUL_U1B; // Variable is intended to be unsigned. 

wire signed [3:0] FUL_S1C; // Variable is intended to be signed and declared explicitly. 

wire signed [3:0] FUL_S1D; // Variable is intended to be signed and declared explicitly. 

wire signed [4:0] Y_S1A = FUL_U1A + FUL_U1B; 

wire signed [4:0] Y_S1B = FUL_S1C + FUL_S1D; 

In “Example3”, signed variables are explicitly declared and the variable declarations match designer’s intentions. 

“Y_S1A” is an explicit signed variable and assigned to an unsigned result from RHS equation. “Y_S1B” is an explicit 

signed variable and is assigned to a signed result from RHS equation. This coding style includes following features: 

• The design implements signed arithmetic 

• Signed variables are declared using “signed” keyword 

• No part-select syntax for explicit signed variables 

• No explicit sign-extension for explicit signed variables 

IV.   LIMITATIONS OF STRUCTURAL LINT 

LINT tools have been supporting RTL designers to structurally detect design issues early in the design cycle. One 

of the key problems they seek to address is “arithmetic overflow”. Arithmetic overflow reported by structural LINT 

tools might inevitably have “false negatives”, giving designers a hard time to isolate real issues. Manual assessment 

of certain types of violations can be tedious, error-prone, and very time-consuming.  

Some successful and false negative examples are given below. 

A. Successful examples  

No violation reported with structural verification in “Example4”. “FUL_U1A” and “FUL_U1B” are both unsigned 

4-bit. Their sum yields unsigned 5-bit result and is assigned to an unsigned 5-bit LHS variable. The implementation 

is structurally correct. Structural verification is sufficient and accurate and formal-aware verification is not required. 

“Example5” is like “Example4”, except it implements signed arithmetic and is structurally correct. Therefore, 

formal-aware verification is not required, and Structural LINT is fully capable of analyzing this case. 

Example4:  
input [3:0] FUL_U1A; 

input [3:0] FUL_U1B; 

output [4:0] Y_U1A; 

assign Y_U1A = FUL_U1A + FUL_U1B; // u5 (31 ~ 0) = u4+u4 (30 ~ 0) 

Example5:  
input signed [3:0] FUL_S1A; 

input signed [3:0] FUL_S1B; 

output signed [4:0] Y_S1F, 

assign Y_S1F = FUL_S1A + FUL_S1B; // s5 (15 ~ -16) = s4+s4 (14 ~ -16) 

B. False negative examples 

In “Example6”, “HLF_U1A” and “HLF_U1B” are both unsigned 4-bit. Their sum is unsigned 5-bit but assigned to 

an unsigned 4-bit LHS variable. Structurally, it appears to be an incorrect implementation. Structural LINT will report 

this case as a violation. However, the driving logics of “HLF_U1A” and “HLF_U1B” reduce their value range by 



 

 

half. So functionally, their sum is 4-bit and the 4-bit LHS variable is wide enough to hold all the possible result from 

RHS expression. “Example7” is similar to “Example6” except it implements signed arithmetic. Both examples 

illustrate limitations of Structural LINT’s. Structural LINT only checks the design “structurally” instead of performing 

“functional” verification. 

Example6:  
input [3:0] FUL_U1A; 

input [3:0] FUL_U1B; 

output [3:0] Y_U3A; 

wire [3:0] HLF_U1A; 

wire [3:0] HLF_U1B; 

assign HLF_U1A = (FUL_U1A > 7) ? 7 : FUL_U1A; // value range : 7 ~ 0 

assign HLF_U1B = (FUL_U1B > 7) ? 7 : FUL_U1B; // value range : 7 ~ 0 

assign Y_U3A = HLF_U1A + HLF_U1B; // u4 (15 ~ 0) = u3+u3 (14 ~ 0) 

Example7: 
input signed [3:0] FUL_S1A; 

input signed [3:0] FUL_S1B; 

output signed [3:0] Y_S3F; 

wire signed [3:0] HLF_S1A; 

wire signed [3:0] HLF_S1B; 

assign HLF_S1A = (FUL_S1A > 3) ? 3 : (FUL_S1A < -4) ? -4 : FUL_S1A; // value range : 3 ~ -4 

assign HLF_S1B = (FUL_S1B > 3) ? 3 : (FUL_S1B < -4) ? -4 : FUL_S1B; // value range : 3 ~ -4 

assign Y_S3F = HLF_S1A + HLF_S1B; //s4 ( 7 ~ -8) = s3+s3 ( 6 ~ -8) 

 

V.   FORMAL LINT ADVANTAGE AND LIMITATION 

LINT combined with Formal technology offers RTL designers exciting new opportunities. EDA vendors claim that 

Formal LINT tools provide a better solution for signed arithmetic overflow verification. However, efficient formal-

aware verification requires RTL designers to adopt a certain coding style. 

One limitation about Formal LINT for signed arithmetic logic is about the signedness of the operands. In Implicit 

Signed Variable Coding Style, all operands are declared as unsigned. Formal LINT tools may have difficulty 

recognizing which variables are signed in the designer’s intention. Without accurate signedness information of 

operands, Formal LINT tools cannot report accurate results. On the other hand, designers declare signed operands 

explicitly in Explicit Signed Variable Coding Style. Formal LINT tools have signedness information for all the 

operands and are supposed to deliver accurate results. But of course, Formal LINT would still have the same 

challenges as Formal Verification, such as the complexity of the “cone of influence”. 

To accurately detect overflow for signed arithmetic logics, we recommend Formal LINT tools to conduct the 

analysis from “value range” point of view. An example algorithm is like this: 

- Determine LHS variables value range base on its signedness and width. 

- Automatically generate assertion rules to validate the RHS equation's result within the LHS variable's value range. 

- During RHS equation’s evaluation, the tool must follow LRM’s definition about operand signedness, signed-to-

unsigned conversion rules, operand width extension rules, etc.  

We have been partnering with EDA tool vendors to make arithmetic overflow verification work properly in Formal 

LINT tools as we aim to achieve higher productivity and accuracy. Although there are still some pending issues, this 

paper recommends the most promising RTL coding style if one wants to use Formal LINT to detect arithmetic 

overflow. Please see Section 6 for details. 

A. Successful examples in Unsigned Arithmetic Coding Style 

In the “Example8”, "HLF_U1A” and “HLF_U1B” are structurally 4-bit, but their value ranges are functionally 

reduced by half. “Y_U3A” is 4-bit and Structural LINT will report arithmetic overflow for it. Formal-aware lint would 

prove there is no overflow for “Y_U3A”. 

Example8:  
input [3:0] FUL_U1A; 

input [3:0] FUL_U1B; 

output [3:0] Y_U3A; 

wire [3:0] HLF_U1A; 

wire [3:0] HLF_U1B; 

assign HLF_U1A = (FUL_U1A > 7) ? 7 : FUL_U1A; // value range : 7 ~ 0 

assign HLF_U1B = (FUL_U1B > 7) ? 7 : FUL_U1B; // value range : 7 ~ 0 

assign Y_U3A = HLF_U1A + HLF_U1B; // u4 (15 ~ 0) = u3+u3 (14 ~ 0) 



 

 

B. Successful examples in Explicit Signed Arithmetic Coding Style 

While Structural LINT would report overflow at “Y_S3F” in “Example9”, Formal LINT proves there is no overflow 

functionally. 

Example9: 
input signed [3:0] FUL_S1A; 

input signed [3:0] FUL_S1B; 

output signed [3:0] Y_S3F; 

wire signed [3:0] HLF_S1A; 

wire signed [3:0] HLF_S1B; 

assign HLF_S1A = (FUL_S1A > 3) ? 3 : (FUL_S1A < -4) ? -4 : FUL_S1A; // value range : 3 ~ -4 

assign HLF_S1B = (FUL_S1B > 3) ? 3 : (FUL_S1B < -4) ? -4 : FUL_S1B; // value range : 3 ~ -4 

assign Y_S3F = HLF_S1A + HLF_S1B; //s4 (7 ~ -8) = s3+s3 (6 ~ -8) 

C. Limitation of Formal LINT in Implicit Signed Variable Coding Style 

In “Example10”, “HLF_S1”e and “HLF_S1f “are both declared with default signedness “unsigned”. In designer’s 

intention, they are signed variables and they are functionally reduced to half value range 3 ~ -4. In the addition 

equation, they are explicitly sign-extended and the result is assigned to a 4-bit variable “Y_SCf”. Notice that 

“Example10” is a functionally correct design using Implicit Signed Variable Coding Style. “Y_SCf” won’t suffer 

from arithmetic overflow because the signed value range of the RHS equation is 6 ~ -8, and the 4-bit variable “Y_SCf” 

can represent a value range of 7 ~ -8. 

However, if we use Formal LINT to analyze the same example, “HLF_S1e” and “HLF_S1f” would be treated as 

unsigned variables since they are not declared as signed. From Formal LINT’s point of view, their value ranges would 

be 15 ~ 0, instead of 3 ~ -4. The addition equation’s range would be analyzed to be 62 ~ 0. The equation’s result is 

then assigned to a 4-bit variable “Y_SCf”, which can only represent an unsigned value range 15 ~ 0. “Example10” 

will be reported as an arithmetic overflow in Formal LINT while it is a correct design from designer’s point of view. 

“Example10” illustrates limitations when we try to use Formal LINT to analyze Implicit Signed Variable Coding 

Style. Formal LINT could inevitably generate false negatives because it doesn’t have signedness information in the 

design intention. 

Example10: 

input  [3:0] FUL_S1e, // intended to be signed, but not declared so 

input  [3:0] FUL_S1f, // intended to be signed, but not declared so 

output [3:0] Y_SCf,   // intended to be signed, but not declared so 

// HLF_S1e[3:0] value range : 3 ~ -4 

wire [3:0] HLF_S1e = (FUL_S1e[3:2]==2'b01) ? 4'b0011      :  

                     (FUL_S1e[3:2]==2'b10) ? 4'b1100      :  

                                             FUL_S1e[3:0] ; 

// HLF_S1f[3:0] value range : 3 ~ -4 

wire [3:0] HLF_S1f = (FUL_S1f[3:2]==2'b01) ? 4'b0011      :  

                     (FUL_S1f[3:2]==2'b10) ? 4'b1100      :  

                                             FUL_S1f[3:0] ; 

// s4 (7 ~ -8) = s3+s3 (6 ~  -8) 

assign Y_SCf[3:0] = {HLF_S1e[3], HLF_S1e[3:0]} + {HLF_S1f[3], HLF_S1f[3:0]};                 

 

VI. GUIDELINES FOR EXPLICIT SIGNED VARIABLE CODING STYLE 

For unsigned arithmetic logics, Formal LINT tools have all information about designer’s intention so they should 

be able to analyze the design properly. For signed arithmetic logics, we observed two coding styles: 

• Implicit Signed Variable Coding Style, and 

• Explicit Signed Variable Coding Style 

Formal LINT tools are still under development to handle Implicit Signed Variable Coding Style due to previously 

mentioned limitation. Therefore, we currently recommend Explicit Signed Variable Coding Style so that Formal LINT 

tools can verify the design correctly.  

Unfortunately, there are some pitfalls and know-hows in Explicit Signed Variable Coding Style, so designers must 

be aware of some guidelines and techniques. We will provide detailed information in the following sections. 

 

A. Signed arithmetic related rules in Verilog-2005 

Although Verilog-2001 is famous and commonly referred to, we have concluded Verilog-2005 has more 

comprehensive information on signed arithmetic RTL coding. Therefore, we have chosen Verilog-2005 LRM to be 

our main reference in this section. The information and guidelines provided in following sections of the paper are 



 

 

based on these sections of Verilog-2005 LRM: Section 3.5.1, Section 5.1.2, Section 5.1.3, Section 5.1.6, Section 5.1.7, 

Section 5.1.8, Section 5.1.12, Section 5.4, Section 5.5.  

Simply speaking, designers must pay attention to two main things in signed arithmetic RTL: 

• Variable signedness 

• Expression width 

Following guidelines and techniques are all related to those two fundamental aspects. 

B. Signed-to-unsigned Conversion 

In Explicit Signed Variable Coding Style, designers explicitly declare signed variables. However, there are 

circumstances where a signed variable is converted into an unsigned variable in the RHS expression of an assignment. 

This is usually undesirable and potentially leads to design bugs. 

Designers must be careful about following design scenario that cause signed-to-unsigned conversion:  

• Explicit signed variable is converted into unsigned when it is used in an expression that has any unsigned 

operand (variable or constants).  

For example: 
wire         [3:0] FUL_U1A; 

wire  signed [3:0] FUL_S1A; 

wire  signed [3:0] FUL_S1B; 

wire         [4:0] Y_U1B = FUL_U1A + FUL_S1A;  // Example12 

wire         [4:0] Y_U1C = FUL_S1A + FUL_S1B;  // Example13 

wire               Y_0 = (FUL_U1A == FUL_S1A); // Example14 

wire               Y_1 = (FUL_U1A >= FUL_S1A); // Example15 

In “Example12”, “FUL_S1A” is converted into unsigned before it is added to the unsigned variable “FUL_U1A”. 

In “Example13”, both “FUL_S1A” and “FUL_S1B” are signed so there is no signed-to-unsigned conversion. Notice 

that the expression type (signed or unsigned) is not affected by the LHS variable, as defined in Verilog-2005 Section 

5.5.1. So even though “Y_U1C” is unsigned, the expression “FUL_S1A+FUL_S1B” is still signed. Both “Example12” 

and “Example13” are “bad” codes. “Example12” has signed-to-unsigned conversion in RHS expression, yielding 

incorrect result. “Example13” assigns signed RHS expression result to an unsigned LHS variable, which cannot 

represent negative values. 

Signed-to-unsigned conversion rule is also applied to expressions that use relational and equality operators. 

“FUL_S1A” will be converted into unsigned in both “Example14” and “Example15”. 

• Explicit signed variable is converted into unsigned when it is used in a concatenation. 

wire signed [3:0] S4b_A; 

wire signed [3:0] S4b_B; 

wire signed [4:0] S5b_Y = {S4b_A[3],S4b_A} + {S4b_B[3],S4b_B}; // Example16 

In “Example16”, “S4b_A” and “S4b_B” are declared as signed variable. However, they are manually sign-extended 

in the addition expression and cause them to be converted into unsigned variable before the addition expression is 

evaluated.  

• Explicit signed variable is converted into unsigned when it is used as its part-select or bit-select form. 

wire signed [3:0] S4b_A; 

wire signed [3:0] S4b_B; 

wire signed [4:0] S5b_X = S4b_A      + S4b_B     ;  // Example17 

wire signed [4:0] S5b_Y = S4b_A[3:1] + S4b_B[3:1];  // Example18 

wire signed [4:0] S5b_Z = S4b_A[3:0] + S4b_B[3:0];  // Example19 

“Example17” yields a good result. “S4b_A” and “S4b_B” remain signed when the addition expression is evaluated. 

They are sign-extended correctly when the expression is evaluated. 

“Example18” and “Example19” are bad implementations. “S4b_A” and “S4b_B” are both converted into unsigned 

variables before the addition is evaluated, causing incorrect results in “S5b_Y” and “S5b_Z”. Bit-select or part-select 

will convert the variable into unsigned, even if the part-select is the full vector. 

• To illustrate the impact of signed-to-unsigned conversion, consider following examples: 

wire             [2:0] U3b_A  =  3'b011; // +3 

wire      signed [2:0] S3b_A  = 3'sb100; // -4 

parameter signed [2:0] S3b_B  = 3'sb100; // -4 

wire      signed [2:0] S3b_C  = 3'sb011; // +3 

parameter signed [2:0] S3b_D  = 3'sb011; // +3 

wire      signed [3:0] S4b_Y1 = U3b_A + S3b_A; // Example21 (Simulation: S4b_Y1 = +7) 



 

 

wire      signed [3:0] S4b_Y2 = U3b_A + S3b_B; // Example22 (Simulation: S4b_Y2 = +7) 

wire      signed [3:0] S4b_Y3 = S3b_C + S3b_B; // Example23 (Simulation: S4b_Y3 = -1) 

parameter signed [3:0] S4b_Y4 = S3b_D + S3b_B; // Example24 (Simulation: S4b_Y4 = -1) 

In “Example21”, “S3b_A” is converted into unsigned variable during evaluation of RHS expression. Instead of 

sign-extended, “S3b_A” is zero-extended into binary “0100”. RHS expression “U3b_A + S3b_A” is evaluated to a 

binary value “0111” (+7), which is clearly not what we want. On the other hand, “Example23” is a correct 

implementation. There is no signed-to-unsigned conversion during evaluation of RHS expression. “S3b_C” and 

“S3b_B” are sign-extended into binary values “0011” and “1100”, respectively. In simulation, “S4b_Y3” is binary 

“1111” (-1 in 2’s compliment), which is correct result. Please note that the signed-to-unsigned conversion rules are 

also applicable to parameters, as shown in “Example22” and “Example24”. 

Signed-to-unsigned conversion is clearly a threat. However, Structural LINT tools can detect such problems. In 

Explicit Signed Variable Coding Style, signed-to-unsigned conversion is the first thing to be fixed. A simple rule-of-

thumb is to make sure all operands, including variables, parameters, and constants, are declared (variable and 

parameter) or formatted (constant) as signed in a signed arithmetic expression. 

C. Sign-casting input argument pitfall 

(Reference: Verilog-2005 Section 5.5) 

In Explicit Signed Variable Coding Style, system task $signed() is a useful syntax but it also comes with a pitfall. 

When a signed arithmetic expression must use an unsigned operand, sign-casting can be useful to turn it into signed. 

Verilog-2005 specified two system tasks for sign-casting, $signed() and $unsigned. System task $signed() turns its 

input argument into a signed operand. System task $unsigned() turns its input argument into an unsigned operand. 

Notice that these two system tasks don’t change the value and width of their input argument. Only the interpretations 

are changed. Practically speaking, system task $signed() is more useful than $unsigned() in the Explicit Signed 

Variable Coding Style so we will focus on $signed() in this section. Consider following example: 

wire         [3:0] A_U4b;                                 // value range: 15 ~   0 

wire  signed [3:0] B_S4b;                                 // value range:  7 ~  -8 

wire  signed [5:0] X_S6b = A_U4b + B_S4b;                 // Example 25 

wire  signed [5:0] Y_S6b = $signed(A_U4b) + B_S4b;        // Example 26 

wire  signed [5:0] Z_S6b = $signed({1’b0,A_U4b}) + B_S4b; // Example 27 

“Example25” mixes unsigned and signed variables in the expression, therefore “B_S4b” suffers from signed-to-

unsigned conversion. “Example26” tries to fix the signed-to-unsigned conversion by casting the unsigned variable 

“A_U4b” into a signed operand. However, the way it uses system task $signed() still causes design issue. If “A_U4b” 

is “12” (“1100” in binary), the operand “$signed(A_U4b)” will be interpreted as a signed value “-4” and this is clearly 

not what the designer wants. “Example27” is a correct implementation, where “A_U4b” is zero-extended and 

concatenated result “{1’b0,A_U4b}” is not interpreted as a signed number [3]. In other words, one would need a 

signed 5-bit operand to hold a 4-bit unsigned value range.  

D. Signed constant pitfalls 

(Reference: Verilog-2005 Section 3.5.1) 

Designers should also be careful about usage of constants when trying to avoid signed-to-unsigned conversion. 

Consider following example: 

wire signed [3:0] A_S4b; 

wire signed [4:0] X_S5b = A_S4b + 4’d3;                    // Example28 

wire signed [4:0] Y_S5b = (A_S4b >= 4’d7) ? 4’sd7 : A_S4b; // Example29 

wire signed [4:0] Z_S5b = (A_S4b >= 7) ? 4’sd7 : A_S4b;    // Example30 

In both “Example28” and “Example29”, “A_S4b” is converted into unsigned because “4’d3” and “4’d7” are “based 

constant” so they are unsigned [1]. In “Example30”, constant “7” is a “simple decimal number” and it doesn’t cause 

signed-to-unsigned conversion because simple decimal numbers are signed [1]. 

In the examples, we can see another constant format “4’sd7”, where “s” indicates that the constant is signed and 

“d” is the base of the constant. However, care must be taken when specifying signed constants. For example: 
 

wire signed [3:0] X_S4b = 4’sd8; // Example31 (bad code) 

wire signed [3:0] Y_S4b = 4’sd4; // Example32 

In “Example31”, “4’sd8” is not positive 8. Its binary form is “1000” and it would be negative 8 if we interpret 

binary “1000” as a signed number. A 4-bit signed number can only represent “+7” to “-8”, therefore it cannot represent 



 

 

“+8”. Specifying constant “4’sd8” appears to be correct but is misleading. In “Example32”, “4’sd4” is correct because 

what it tries to represent is within its valid value range. 

E. Operator precedence of arithmetic shift 

(Reference: Verilog-2005 Section 5.1.12 and 5.1.2) 

Multiplication or division by power of 2 doesn’t require actual multiplier or divider. They are often done by 

“variable shift”. Shifts can be done implicitly by concatenation or explicitly by shift operators. Consider following 

examples: 

wire        [3:0] A_S4b;                                // Implicit signed variable 

wire signed [3:0] B_S4b;                                // Explicit signed variable 

wire        [7:0] Y1_S8b = {{5{A_S4b[3]}},A_S4b[3:1]};  // Example33 

wire signed [7:0] Y2_S8b = B_S4b >>> 1;                 // Example34 

wire signed [7:0] Y3_S8b = B_S4b <<< 1;                 // Example35 

wire signed [7:0] Y4_S8b = B_S4b >>  1;                 // Example36 (bad code) 

wire signed [7:0] Y5_S8b = B_S4b <<  1;                 // Example37 (not recommended) 

"Example33” is a typical way in Implicit Signed Variable Coding Style to implement multiplication/division by 

power of 2. No variable is declared as signed but designer’s intention about variable’s signedness can be implicitly 

recognized from the manual sign-extension code for A_S4b. The implementation is correct but Structure LINT and 

Formal LINT tools will have a hard time analyzing the code due to lack of explicit signedness information. 

For Explicit Signed Variable Coding Style, we avoid concatenation to prevent signed-to-unsigned conversion. 

Instead, we can use arithmetic shift operators, “<<<” and “>>>”, to implement multiplication and division by power 

of 2, respectively. Arithmetic right-shift “>>>” will sign-extend a signed variable and zero-extend an unsigned 

variable, yielding correct result in arithmetic logic. As a simple rule of thumb, logical right-shift should be avoided in 

signed arithmetic logics.  

“Example34” and “Example35” are the right ways to do shifts in arithmetic logics. “Example36” yields incorrect 

result because it uses logical right-shift on an explicit signed variable. “Example37” yields correct result but is not 

recommended to simplify the guideline for designers. Please note that the right operand of shift operator is always 

unsigned and has no effect on the signedness of the result [1]. 

Designers must also pay attention to operator precedence when using arithmetic shifts. According to Verilog LRM, 

shift operators have lower precedence than “+”, “-“, “*” and “/”. This could be a little counter intuitive when designers 

think of shifts as multiplication and division. Consider following example: 

wire signed [3:0] A; 

wire signed [3:0] B; 

wire signed [7:0] Y1 = A +  B <<< 1 ; // (A + B)*2 , Example38 

wire signed [7:0] Y2 = A + (B <<< 1); //  A + B *2 , Example39 

wire signed [7:0] Y3 = A +  B * 2   ; //  A + B *2 , Example40 

Our intention here is to implement “A + B*2” where multiplication has higher precedence. In “Example38”, 

addition will be evaluated first because operator “+” has higher precedence than operator “<<<”. “Example 39 and 

40” match our design intention. Notice that we need parenthesis around “B<<<1” in “Example 2”. 

F. Expression width and interim result pitfall 

(Reference: Verilog-2005 Section 5.4) 

Designers should keep the following table in mind to get more insight about how the length of an expression is 

determined (partial table extracted from Verilog-2005 Section 5.4): 

 

A simple rule of thumb is to find out the largest operand in both RHS and LHS of the assignment, with exceptions 

at shift and conditional operators. Consider following example: 



 

 

wire signed [3:0] A4b; 

wire signed [4:0] B5b; 

wire signed [5:0] C6b; 

wire signed [8:0] S9b; 

wire signed [5:0] Y6b = (S9b>9’sd100) ? (A4b>>>2) : (B5b+C6b); // Example41 

wire signed [6:0] Y7b = (S9b>9’sd100) ? (A4b>>>2) : (B5b+C6b); // Example42 

In “Example 41” and “Example42”, only the widths of underlined variables shall be considered when we try to 

evaluate whether the assignments have arithmetic overflow issue. According to the expression length definition table, 

the select expression “S9b>9’sd100” in the conditional operator and the constant “2” in the arithmetic shift operator 

do not affect our evaluation for arithmetic overflow. In “Example41”, the largest operands are 6-bit (“Y6b” and 

“C6b”), so all sub-expressions are evaluated as 6-bit. No overflow when “A4b>>>2” is evaluated as 6-bit expression. 

However, expression “B5b+C6b” has an overflow issue because it is evaluated as 6-bit expression. In “Example42”, 

the largest operands are 7-bit (“Y7b”), therefore all sub-expressions are evaluated as 7-bit. Expression “B5b+C6b” 

has no overflow issue because it is evaluated as 7-bit expression. 

Due to the expression length evaluation rule in Verilog LRM, designers must be careful about an “interim result 

overflow” problem, also mentioned in the Verilog-2005 LRM: 

Example43: 

wire [3:0] A = 4'b1100; 

wire [3:0] B = 4'b0011; 

wire [3:0] C = 4'b1110; 

                             // Simulation result: 

wire [5:0] Y0 = {A,B} >>> 2; // Y0 = 6'b110000 

wire [2:0] Y1 =  A    >>> 1; // Y1 = 3'b110 

wire [3:0] Y2 = (B+C) >>> 1; // Y2 = 4'b0000   

wire [4:0] Y3 = (B+C) >>> 1; // Y3 = 5'b01000  

wire [3:0] Y4 = (B+C) /2   ; // Y4 = 4'b1000   

wire [4:0] Y5 = (B+C) /2   ; // Y5 = 5'b01000  

wire [3:0] Y6 =  B+C-A     ; // Y6 = 4'b0101   

wire [4:0] Y7 =  B+C-A     ; // Y7 = 5'b00101 

In “Example43”, for “Y2”, RHS expression’s value range is 15~0 and LHS variable “Y2”’s value range is also 

15~0. It appears that LHS variable is wide enough to hold the result from RHS. However, (B+C) is evaluated as a 4-

bit sub-expression because the largest operand in the entire assignment is 4-bit. Overflow occurs when “(B+C)” is 

evaluated. “Y4” has no interim result overflow because the constant “2” is 32-bit and therefore “B+C” is also evaluated 

as 32-bit expression and has no overflow and the result is correct. “B+C” for “Y6” does not have interim overflow 

either because “B+C-A” is evaluated all together. 

As a rule of thumb, we suggest designers to be careful about “interim result overflow” issue when the value range 

is reduced by operators such as “>>>”, “/” and “-“.  

G. Signed variable in assignment and module instantiation 

(Reference: Verilog-2005 Section 5.5.1 and 12.3.11) 

Signedness of LHS variable doesn’t affect signedness of RHS expression in an assignment. Examples: 

wire        [2:0] U3b_0    = 3'b111;     // Unsigned 7 

wire signed [2:0] S3b_0    = 3'sb111;    // Signed  -1 

wire        [2:0] U01_3b_0 = 3'b100;     // Unsigned 4 

wire        [2:0] U01_3b_1 = 3'b111;     // Unsigned 7 

wire signed [3:0] S00_4b_0 = U3b_0;      // Example44.a  S00_4b_0 = binary 0111 (Zero-extended) 

wire signed [3:0] S00_4b_1 = U3b_0[2:0]; // Example44.b  S00_4b_1 = binary 0111 (Zero-extended) 

wire signed [3:0] S00_4b_2 = S3b_0;      // Example44.c  S00_4b_2 = binary 1111 (Sign-extended) 

wire signed [3:0] S00_4b_3 = S3b_0[2:0]; // Example44.d  S00_4b_3 = binary 0111 (Zero-extended) 

wire signed [3:0] S01_4b_0 = U01_3b_0 - U01_3b_1; // Example45.a  S01_4b_0 = binary  1101 = -3 

wire        [4:0] U01_5b_0 = S01_4b_0;            // Example45.b  U01_5b_0 = binary 11101 = 29 

In “Example44.a” and “Example44.b”, RHS variables are unsigned and zero-extended in the assignment even 

though they are assigned to LHS signed variables. In “Example44.d”, RHS variable is converted to unsigned due to 

part-select. Therefore, it is zero-extended at the assignment despite the signed variable at LHS. Similarly, in 

“Example45.a” and “Example45.b”, LHS variable’s signedness doesn’t affect RHS expression’s signedness. 

Signedness doesn’t cross through module instantiation boundary either. Care must be taken to make sure the 

signedness of the variable matches the signedness of the module port. According to Verilog-2005 Section 12.3.11, the 



 

 

sign attribute does NOT cross hierarchy. Signedness of a module port is determined by the port declaration inside of 

that module. For example, an unsigned variable connected to a signed module port doesn’t make the port unsigned. 

 

VII. TOOL EVALUATION FOR EXPLICIT SIGNED VARIABLE CODING STYLE 

We’ve been working with EDA vendors to polish their Formal LINT tools to have more relevant and accurate 

analysis result for signed arithmetic overflow verification. Due to the limitations mentioned in  

Limitation of Formal LINT in Implicit Signed Variable Coding Style, we chose to focus on Explicit Signed Variable 

Coding Style, which we believe is the foundation of the success of Formal LINT verification for Implicit Signed 

Variable Coding Style.  

We’ve observed promising results in the Explicit Signed Variable Coding Style category. In this section, we provide 

a summary of our Formal LINT tool evaluation. Furthermore, some complementary Structural or Formal LINT rules 

are also evaluated. Those complementary rules can help designers to avoid the pitfalls found in Explicit Signed 

Variable Coding Style. 

A. Formal LINT results 

Check Items Required LINT type Commercial Solutions 

Signed-to-
unsigned 

conversion 

Due to mixed signed and unsigned operands in equation Structural Covered 

Due to part-select Structural Work in progress 

Due to concatenation Structural Work in progress 

Bad sign-casting Formal Work in progress 

Bad signed constant Structural Work in progress 

Operator precedence of arithmetic shift 
(Tools won’t know designer’s intention) 

n/a n/a 

Interim result overflow Formal Work in progress 

Arithmetic overflow  

(LHS variable is not wide enough to hold result from RHS equation) 
Formal Covered 

 

We evaluated different Formal LINT tools and the table summarizes the overall results. Although some of the 

complementary checks are still under development, they are all feasible according to EDA vendors’ feedback. The 

vendors are committed to providing comprehensive solutions. 

 

VIII. SUMMARY 

This paper provides a comprehensive exploration of the arithmetic overflow issue, delving into its intricacies. In the 

initial segment, we categorize common arithmetic logic coding and design styles into three distinct categories. 

Subsequently, we undertake a rigorous analysis of the capabilities of current Structural LINT and Formal LINT tools 

in verifying both unsigned and signed arithmetic overflow issues within these three styles. We emphasize that the crux 

of signed arithmetic overflow analysis lies in effectively conveying the signedness of variables to the verification 

tools. 

Our investigation reveals that Formal LINT exhibits significant promise in verifying the "Explicit Signed Variable 

Coding Style." Consequently, Section 6 of this paper places a focused lens on presenting detailed coding guidelines 

and potential pitfalls for this specific coding style. Formal LINT EDA vendors can use the information to create 

complementary checks to provide comprehensive solutions for signed arithmetic overflow verification.  

To encapsulate our findings succinctly, the table below offers a summary of the advantages and disadvantages 

associated with each of the three coding styles. Formal LINT can properly analyze Explicit Signed Variable Coding 

Style. However, the coding style has many pitfalls and may not be very friendly to the designers. Implicit Signed 

Variable Coding Style, on the other hand, has no tricky pitfalls and some designers prefer the coding style to have full 

control and clarity about operands manipulation. Formal LINT tools are still evolving and exploring the possibilities 

to accurately analyze Implicit Signed Variable Coding Style. 

Drawing from the insights presented in this paper, we extend a recommendation to RTL designers. It is prudent for 

designers to proactively consider whether they intend to employ Formal LINT as their tool of choice for arithmetic 

overflow verification and subsequently determine the most suitable coding style to adopt. This proactive decision-

making process can significantly enhance the efficiency and accuracy of the verification process. 

 

 

 



 

 

Category Type Pitfall Formal LINT limitation for Arithmetic Overflow Verification 

Unsigned Arithmetic Logic Design Type None No limitation 

Implicit Signed Variable Coding Style Coding Style None 

Lack of signedness information. Formal LINT currently cannot 

accurately analyze it. 
(Work-in-progress for EDA vendors) 

Explicit Signed Variable Coding Style Coding Style Many 

No showstopper but need complementary checks for designers to 

avoid pitfalls.  

(Work-in-progress for EDA vendors) 
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