
User Experiences with the Portable Stimulus Standard
Tom Fitzpatrick, PSWG Vice Chair
Prabhat Gupta, AMD
Mike Chin, Intel

The Biggest Change

© 2023 Accellera Systems Initiative, Inc.2

Introducing Behavioral Coverage (WIP)
 Given a stream of action executions, find out

whether a given temporal scenario (query) occurs
in this stream

 The cover statement specifies the interesting
scenario

 A monitor encapsulates behaviors to be covered
- A monitor may be implicit (in a cover statement) or explicit

© 2023 Accellera Systems Initiative, Inc.

action write { rand bit [32] addr; }
action read { rand bit [32] addr; }

monitor read_after_write { write w; read r; activity { w; r; }}

cover Cov1 { read_after_write wr; activity { wr with r.addr == w.addr; }}
cover Cov2 { write w1, w2; read r; activity { w1; r overlaps (w2) ;}

idle

read
addr = 0x1000

send

wait

idle
send

wait

Cov1

Cov2

3

write
addr = 0x2000

read
addr = 0x2000

write
read

write

Behavioral Coverage Tracking
 Action traversal (e.g., do A with x == 5):

- Match nearest action execution matching imposed constraints

 Concatenation: concat { m1; m2 }
- Match first m2 after m1

- Match m1 from the current point; from every match point of m1 match m2

 Eventually: eventually m
- Some time in the future

- Match m from everywhere, starting from the current point

 Sequence: sequence { m1; m2 } or { m1; m2 }
- Match m2 after m1, not necessarily immediately

- Match m1 from the current point; starting from the match of m1 match m2 from every point
- Equivalent to concat { m1; eventually m2 }

 Overlaps: {m1 overlaps m2}
- Match m1 if m2 executes at any point while m1 is executing

 Select: select { m1; m2 }
- Match either m1 or m2

© 2023 Accellera Systems Initiative, Inc.

A

m1 m2

m

m1
m2

m1
m2

4

Solve/Runtime Messaging
 New addition to the Core Library

- Solve time
- format
- print

- Runtime
- message

- Either
- error/fatal

© 2023 Accellera Systems Initiative, Inc.

solve function void print_foo(my_struct s) {
print("The context of the struct is:\n");
print("value = %d\nname = '%s'\n", s.value, s.name);

}
solve function string get_foo_context_string(my_struct s) {
return format("value = %d\nname = '%s'\n", s.value, s.name);

}

exec body {
y = my_func();
message(FULL, "The values of the variables x and y are: ");
message(LOW, "%d, %d", x, y);

}

package io_pkg { // may change to std_pkg or…
function void error(string format, type... args);
function void fatal(int status, string format, type... args);

}
returned to calling
environment

5

Solve/Runtime Messaging
 Solve-Time File I/O

- Via file handles

- Single Functions

© 2023 Accellera Systems Initiative, Inc.

package io_pkg {
typedef chandle file_handle_t;
static const file_handle_t nullhandle = /* implementation-specific */;
enum file_option_e {TRUNCATE, APPEND, READ};
function file_handle_t file_open(string filename, file_option_e opt = TRUNCATE);
function void file_close(file_handle_t file_handle);
function bool file_exists(string filename);
function void file_write(file_handle_t file_handle, string format, type... args);
function string file_read(file_handle_t file_handle, int size = -1);

function void file_write_lines(string filename, list<string> lines,
file_option_e opt = TRUNCATE);

function list<string> file_read_lines(string filename);}

6

List randomization
 Lists can now be

declared rand
- Randomized when its

container is randomized
- Just like other rand fields

 The size is considered a
state variable
- size cannot be constrained

directly

© 2023 Accellera Systems Initiative, Inc.

struct S {
rand list<bit[8]> lst;
exec pre_solve { // Initialize the list
repeat (100) {
lst.push_back(0);

}
}
constraint {lst.size() in [4..100]; // Error: illegal constraint on size
foreach (lst[i]) {
lst[i] == i+lst.size(); // OK: size is a state variable in foreach

}
}

}

7

Procedural randomization statement
 Allowed in solve exec blocks

 Subset allowed in
target exec
- No struct randomization

 Also supports
- urandom
- urandom_range

© 2023 Accellera Systems Initiative, Inc.

struct S1 {
rand bit[8] a, b;

}

struct S2 {
rand S1 f1;
S1 f2;
constraint f1.a < f2.a;

}

action A {
exec post_solve {
S2 v1;
bit[4] v2;
v1.f2.a = 100;
randomize v1, v2 with {v1.f1.a < v2;}

}
} randomize two variables

random
non-random

inline constraint
f1.a < 15

will be randomized

will be randomized as
v1.f1.a, [0..14]
v1.f1.b

active constraint
f1.a < 100

8

Dist randomization constraint
 Similar to SystemVerilog
- := assigns a specific weight
- :/ distributes weight across a list

 Subject to other constraints
- dist only biases values in the legal

range

© 2023 Accellera Systems Initiative, Inc.

struct S {

rand bit[32] x;

bit y;

constraint dist x in [100..102 := 1, 200 := 2, 300 := 5];

constraint dist x in [100..102 :/ 1, 200 := 2, 300 := 5];

constraint dist x in [100..102 := 1, 200 := 2, 300 := 5];

constraint (y==1) -> x > 300;

}

100:1, 101:1, 102:1, 200:2, 300:5

100:1/3
101:1/3, 200:2, 300:5
102:1/3

Constraint causes dist
to be ignored

9

Labels as action handles
 Labels as action handles

- Create handle for anonymous action traversal
- Can be referenced from above

© 2023 Accellera Systems Initiative, Inc.

action mem2mem_chain {
activity {
do mem_c::load_buff;
repeat (10) {
select {
xfer: do dma_c::mem2mem_xfer;
cpy: do cpu_c::memcpy;

}
}

}
}

action my_test {
activity {
do mem2mem_chain with { xfer.size > 10; };

}
}

dma_c::mem2mem_xfer

10

Inference Issue

© 2023 Accellera Systems Initiative, Inc.

action my_stress_seq {
activity {
do bringup;
do A;
do B;

}
}

mode X

B

AconfigX

bringup

state config_s {
rand mode_e mode;

}

action configX {
output config_s out_cfg;
constraint out_cfg == X;

}

action B {
input config_s cfg;
constraint cfg.mode == X;

}

B should start immediately
after A completes – it’s a
critical aspect of the intent

Stress is not achieved
because relevant
behavior is spaced
apart or dilutedIn reality B may

start long after
A completes

bringup

A

mode X

B

configX

bringupbringup

A

mode X

B

configX

bringup

mode X

B

AconfigX

bringup

11

Inference For “Atomic” Block

© 2023 Accellera Systems Initiative, Inc.

A

mode X

B

configX

bringup

mode X

B

bringupconfigX

A

action my_stress_seq {
activity {
do bringup;
do A;
do B;

}
}

action my_stress_seq {
activity {
do bringup;
atomic {

do A;
do B;

}
}

}

Any dependency of
B is a dependency
of the entire block

The atomic activity block guarantees
that the invocation of each action
does not wait for any action other than
its predecessor in the sequence

Inferred action is
scheduled prior to
the atomic block

Atomic block
doesn’t start
until all its
dependencies
are met

12

Concise read-modify-write
 Added a way to read-modify-write

in a single operation

© 2023 Accellera Systems Initiative, Inc.

pure component reg_c < type R,
reg_access ACC = READWRITE,
int SZ = (8*sizeof_s<R>::nbytes)> {
function R read();

function void write(R r);

function bit[SZ] read_val();

function void write_val(bit[SZ] r);

function void write_masked(R mask, R val);
function void write_val_masked(bit[SZ] mask,

bit[SZ] val);
function void write_field(string name,

bit[SZ] val);
function void write_fields(list<string> names,

list<bit[SZ]> vals);
}

struct CR : packed_s<> {
bit en;
bit[11] pad;
bit[4] mode;
bit[16] coeff;

}

component dut_c {
dut_regs_c regs;

action cfg_a {
rand bit[4] mode;
rand bit[16] coeff;
exec body {

comp.regs.cr.write_masked(
{.mode=~0, .coeff=~0}, {.mode=mode, .coeff=coeff});

comp.regs.cr.write_val_masked(0xFFFFF000,
(coeff << 16) | (mode << 12));

comp.regs.cr.write_fields({“mode”, “coeff”},
{mode, coeff});

}
}

}

13

Additional New Features
 Static functions in components

- Function declaration associated with the component type (not instance)
- Called via the “::” scope operator

 Tag/Addr_value

 Enum base type

 Floating Point computation and storage types

© 2023 Accellera Systems Initiative, Inc.14

AI Engine Subsystem Verification With PSS

Prabhat Gupta - AMD

Agenda
 Introduction

 PSS initial approach – tackle portability

 First-class PSS model

 Constraints

 PSS Methodology

 Conclusion

© 2023 Accellera Systems Initiative, Inc.16

Introduction
 Verification of a grid of general-purpose AI Engines

- AI Engine information is available at
https://www.xilinx.com/products/technology/ai-engine.html

 Example use cases of AI Engine array
- Auto framing and eye gaze correction with Microsoft Teams
- Low power background blur, audio noise reduction, etc.

 Highly configurable network fabric

 Compute, Memory, and Shim engines

 Connected to SoC with a high-speed on-chip data network
and pervasive control network

 Grid of engines and highly configurable network makes
creating functional, performance, and post-silicon validation
tests very challenging

© 2023 Accellera Systems Initiative, Inc.17

Control Processor
Subsystem

AIE array

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Mem Mem Mem Mem

Shim Shim Shim Shim

Circuit-switched DMA
 More than one channel going east-west or north-south

 Multi-hop acyclic paths for DMAs

 Adjacent columns can be isolated as a group

 DMAs can’t cross the isolation boundary

© 2023 Accellera Systems Initiative, Inc.18

AI sub-system

© 2023 Accellera Systems Initiative, Inc.19

AI Array with embedded control
processor

AI array can be subdivided for isolated
parallel work from different
applications

Host processor sends work to
embedded processor

Embedded processor sends compute
kernels to AIE array

AIE array

NOC

Embedded
Processor

NOC

SoC
Comm

Address
Translation

Registers

NOC

Testbench environments

 IP only
- AIE array UVM/C++ environment

 Subsystem
- AIE array with an embedded processor running C code

with UVM/C++ environment

 Full SoC
- X86 processors, AIE subsystem, and rest of chip
- C code running on x86 and embedded processor

 Post-silicon bring-up and validation
- C code running on the main and embedded processor

© 2023 Accellera Systems Initiative, Inc.20

AIE array

NOC UVC

PSS

AIE array

NOC

Embedded
Processor

NOC

SoC
Comm

Address
Translation

Registers AIE array

NOC

X86 cores

Verification Challenges
 AIE Array

- Many possible paths through the AI engine array
- Compute array can be configured into different partitions, which impacts routing
- Need to exercise many combinations to verify routing/arbitration throughput/latency

- Legal pseudo-random paths for routing
- Challenging to account for possible parallel DMAs without a lot of procedural code in a complex test
- Lots of boilerplate code for new tests

 Subsystem
- Need to verify new interfaces
- Most tests in UVM, take advantage of randomization/coverage with the embedded processor in bypass
- A lot of boilerplate code for each test
- Some bare-metal content for the embedded processor, but it’s a huge barrier, not usually done

 SoC
- Need bare-metal test content, but only have UVM content
- Must develop multi-core tests to exercise key cases  multicore is always a challenge
- Synchronization across AIE and other IP are challenging

© 2023 Accellera Systems Initiative, Inc.21

PSS FIRST STEPS
The value – portability

© 2023 Accellera Systems Initiative, Inc.22

An AIE Test
 Power up and bring the AIE array out of the reset with the UVM testbench

 Boot AIE array
- Initialization sequence in PSS

 Configure AIE array isolation with PSS
- Adjacent columns isolated to work on different applications
- Find a valid random isolation setup, that could be user-supplied, and do isolation programming

 Configure acyclic circuit-switched DMA circuits with PSS
- Find N random valid circuits across all isolation units, program the circuits

 Generate traffic
- Run M parallel DMAs and check the results
- Select valid routes from the last step

 Repeat with new isolation setup

© 2023 Accellera Systems Initiative, Inc.23

PSS first steps for AIE project
 UVM to PSS – started at IP level

- Mostly procedural code converted from UVM to PSS
- Fixed column isolation setup and DMA circuits
- PSS address spaces and registers

 Portability to the embedded control processor (CP)
- Address space adapted to CP address map and TLBs

 Value
- NOC randomization
- New tests running on the control processor
- Test available for post-silicon bring up

© 2023 Accellera Systems Initiative, Inc.24

AIE array

NOC UVC

PSS

AIE array

NOC

Embedded
Processor

NOC

SoC
Comm

Address
Translation

Registers

NOC

PSS MODEL INTEGRATION
How does the PSS portability work?

© 2023 Accellera Systems Initiative, Inc.25

AIE IP PSS Integration

© 2023 Accellera Systems Initiative, Inc.26

AIE array

UVC

exec body {
comp.regs.SOME_REG.write_val(0xdeadc0de);
…
write32(mem_handle, 0x12345678);

}

component pss_top {
transparent_addr_space_c<aie_mem_trait_s> mem;
transparent_addr_space_c<mem_trait_s> sysmem;

exec init_down {

transparent_addr_region_s<mem_trait_s> sysmem_region;
(void)sysmem.add_region(sysmem_region);
...

// Memory setup
repeat(col: COMPUTE_TILE_COLS) {

repeat (row: COMPUTE_TILE_ROWS) {
transparent_addr_region_s<aie_mem_trait_s> tile_region;

aie_tile_region.size = COMPUTE_MEM_SIZE;
aie_tile_region.addr = compute_tile_base(row, col);

aie_tile_region.trait.mem_block = COMPUTE_TILE;
aie_tile_region.trait.row = row + COMPUTE_TILE_START_ROW;
aie_tile_region.trait.col = col;

(void)mem.add_region(tile_region);
};

};

// Add PSS executors to map to UVCs
// May have some tool-specific setup for integration
// Call to add_executor
...

PSS tool-specific
integration

usually calling
UVM sequence

AIE Subsystem PSS integration

© 2023 Accellera Systems Initiative, Inc.27

exec body {
comp.regs.SOME_REG.write_val(0xdeadc0de);
…
write32(mem_handle, 0x12345678);

}

component pss_top {
transparent_addr_space_c<aie_mem_trait_s> mem;
transparent_addr_space_c<mem_trait_s> sysmem;

exec init_down {
// Add PSS executors to map to Embedded Processor
// May have some tool-specific setup for integration
// Call to add_executor
...

// Memory setup
repeat(col: COMPUTE_TILE_COLS) {
repeat (row: COMPUTE_TILE_ROWS) {

transparent_addr_region_s<mem_trait_s> tile_region;

aie_tile_region.size = COMPUTE_MEM_SIZE;
aie_tile_region.addr = TLB(compute_tile_base(row, col));

aie_tile_region.trait.mem_block = COMPUTE_TILE;
aie_tile_region.trait.row = row + COMPUTE_TILE_START_ROW;
aie_tile_region.trait.col = col;

(void)mem.add_region(tile_region);
};

};
transparent_addr_region_s<mem_trait_s> sysmem_region;
(void)sysmem.add_region(sysmem_region);
...

}
}

exec body {
(volatile uint32_t) SOME_REG_ptr = 0xdeadc0de;
(volatile uint32_t) mem_handle_ptr = 0x12345678;

}

AIE array

NOC

Embedded
Processor

NOC

SoC
Comm

Address
Translation

Registers

NOC

SoC PSS integration
 Multiple executors

- One embedded processor and a few x86 processors

 Two test compilation units
- Tool-specific setup to generate test code for x86 and embedded control

processor

 PSS action synchronization across executors
- Tool-specific implementation, usually memory-based mailboxes

 PSS Memory setup
- Shared system memory
- Local AIE memories

© 2023 Accellera Systems Initiative, Inc.28

AIE array

NOC

Embedded
Processor

NOC

SoC
Comm

Address
Translation

Registers

NOC

X86 cores

FIRST-CLASS PSS MODEL
How it should be

© 2023 Accellera Systems Initiative, Inc.29

action aie_dma {

activity {
parallel {

replicate (N) { do aie_c::dma; }
};

};
};

action aie_dma_one_group {
activity {

do setup_isolation with {
out_iso_state.num_iso_groups == 1;

}

parallel {
replicate (N) { do aie_c::dma; }

};
};

};

Desired PSS model capabilities/example tests

Setup random isolation groups
Setup multiple acyclic circuits in an isolation
group
Multiple parallel DMAs with data checks
Enable inference for simple test writer
interface
A simple PSS Test API that allows random
and directed tests

PSS model capabilities
N parallel DMAs with random circuits in a
random isolation setup

N parallel DMAs with random circuits in an
isolation setup with all columns as one group

Maximum parallel DMAs to system memory
Validate every point-to-point path in the AIE
grid

Example tests

© 2023 Accellera Systems Initiative, Inc.30

PSS model

© 2023 Accellera Systems Initiative, Inc.31

PSS TOP AI Subsystem

Test action
dma_compute2compute

dma_compute2mem

dma_compute2shim

dma_mem2compute

dma_mem2mem

dma_mem2Shim

dma_shim2compute
…

Stream
pool

Buffer
pool

Resource
pool

Memory

exec_init Control Processor
Subsystem

AIE array

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Mem Mem Mem Mem

Shim Shim Shim Shim

PSS model

© 2023 Accellera Systems Initiative, Inc.32

component mem_tile <
int MEM_SIZE, component Translation,
int NO_DMA, int NO_BD>

: aie_tile<NO_DMA, NO_BD>
{

Translation translation;
}

component shim_tile< int NO_DMA, int NO_BD >
: aie_tile<NO_DMA, NO_BD>

{}

component compute_tile <
int MEM_SIZE, component Translation,
int NO_DMA, int NO_BD>

: aie_tile<NO_DMA, NO_BD>
{

Translation translation;
}

component aie_tile <int NO_DMA,int NO_BD>
{

pool [NO_DMA] dma_chan_s chan_pool;

action configure_isolation {}

action configure_switch {}

action stream_to_mem {}

action mem_to_stream {}
}

component tile_addr_translation_c {

target function bit[64] translate(
addr_handle_t hndl,
bit[64] base_address)

{
bit[64] addr;
...
return (addr);

}
}

Abstract base actions in separate files. Allows project-specific
action implementation while keeping high-level tests the same

Test composition

© 2023 Accellera Systems Initiative, Inc.33

action sysmem2computedma {
activity {

sysmem2computetile_dma_parallel with {
in_circuits_state.num_isolation_groups == 1;

};
};

};

sysmem2computetile_dma_p

aie_profile_state_s aie_circuit_state_s
num_isolation_groups 1

Flow Object

Test action

Inferred action

mem2stream stream2mem

check_dma

write_ipu_datasetup_isolation

setup_circuits

Solved scenarioTest

Data flow

Control flow

Test API design process
dma_compute2compute
 State object to store current circuit state

- Max size circuits array in state object
- Most rules about circuits encapsulated in state object

 First try
- Action input current circuit state and output updated

circuit state with new circuits

 Problem
- Huge constraint space for doing two DMAs in series
- Sparse solution space with constraints on input and

output state objects

© 2023 Accellera Systems Initiative, Inc.34

action dma_compute2compute_parallel {

input circuit_state_s circuits_in;
output circuit_state_s circuits_out;

// constraint rules to create output circuit state
// from the input circuit state
// ...

rand array<circuit_node_s, MAX_CIRCUITS> src;
rand array<circuit_node_s, MAX_CIRCUITS> dst;

rand int in [1..MAX_CIRCUITS] parallel_count;

activity {
parallel {

replicate(i: parallel_count) {
do compute_tile::mem_to_stream with {node == src[i];}
do compute_tile::stream_to_mem with {node == dst[i];}

}
}

}
}

action two_dma {
activity {

do dma_compute2compute_parallel;
do dma_compute2compute_parallel;

}
}

Test API design process
dma_compute2compute
 State object to store current circuit state

- Max circuits array

 Preferred solution
- Constraints for isolation and circuits in the state object
- DMA actions have an input state object but no output

state

 Tip
- A generic DMA action, that inputs the current state

manipulates it, and then outputs it, is not always a good
solution for high-level test space modeling with PSS
- This generic action is very procedural that unnecessarily

adds to constraint-solving complexity
- Be cognizant of PSS global constraint-solving semantics

© 2023 Accellera Systems Initiative, Inc.35

action dma_compute2compute_parallel {

input circuit_state_s circuits_in; // Only INPUT

rand array<circuit_node_s, MAX_CIRCUITS> src;
rand array<circuit_node_s, MAX_CIRCUITS> dst;

rand int in [1..MAX_CIRCUITS] parallel_count;

activity {

parallel {
replicate(i: parallel_count) {

do compute_tile::mem_to_stream with {node == src[i];}
do compute_tile::stream_to_mem with {node == dst[i];}

}
}

}
}

Test API – building block actions

© 2023 Accellera Systems Initiative, Inc.36

• Constraint space and usability concerns affect the Test API design most
• Quick iterations on API design is highly desirable

Test API design

• Level 1
• Fully encapsulated sub-IP or IP model with registers, initialization, and programming sequences
• E.g., compute, mem, and shim tile PSS components with mem_to_stream and stream_to_mem

actions
• Not directly used to create tests

• Level 2
• Main test writers' interface
• For example, sysmem2computetile_dma_parallel action from AIE component

• Level 3
• Simplified high-level test interface used by the architect, SoC DV, and post-silicon
• DMA action to do DMA from a given tile to another tile

Three levels of test API – building block actions

CONSTRAINTS
They are powerful and dangerous

© 2023 Accellera Systems Initiative, Inc.37

Constraint efficiency
 Constraints are the backbone of the PSS model

- Allows for action inference, flow object binding inference, describe state and resource rules

 PSS models formulate a global constraint-solving problem
- Local randomization in PSS 2.1 should contain the constraint-solving problem for data-only randomization

 Efficient constraints are extremely important for PSS models

 TIPS
- Only expose important attributes of test space as rand for test space exploration

- E.g., random DMA channel allocation is important as a model attribute but not so much the data for DMA

- Explicitly restrict the domain of a random attribute
- E.g., DMA channel number shouldn’t be ‘rand int’ but ‘rand int in [0..MAX_DMA-1]’

© 2023 Accellera Systems Initiative, Inc.38

Constraint efficiency – example problem
 Group adjacent columns as an isolation group

 Problem – create random legal isolation groups

 Isolation group examples
- One group - [Col 0, Col 1, Col 2, Col 3]
- Four groups - [Col 0], [Col 1], [Col 2], [Col 3]
- Two groups - [Col 0, Col 1], [Col 2, Col3]
- Two groups - [Col 0, Col 1, Col 2], [Col3]
- Two groups - [Col 0], [Col 1, Col 2, Col3]
- Three groups – [Col 0], [Col 1, Col 2], [Col 3]
- Three groups – [Col 0, Col 1], [Col 2], [Col 3]
- Three groups – [Col 0], [Col 1], [Col 2, Col 3]

© 2023 Accellera Systems Initiative, Inc.39

Col 0 Col 1 Col 2 Col 3

Constraint search space
 Get N good mango baskets from M baskets

- Which basket is bad is not important

 Constraint solver needs to find values of
all rand attributes that satisfy the
constraints

 The possibility space of the cross of rand
attributes domain size is the constraint
space

© 2023 Accellera Systems Initiative, Inc.40

action eat_good_mangoes {

rand array<int in [1..MAX_MANGO], MAX_BASKET> baskets;

rand array<bool, MAX_BASKET> good_baskets;

rand int in [0..MAX_BASKETS] num_good_baskets;
}

Size of constraint space = MAX_MANGO *

MAX_BASKET *

MAX_BASKET * 2

MAX_BASKET

action eat_good_mangoes {

rand array<int in [1..MAX_MANGO], MAX_BASKET> baskets;

// Reduced constraint space
// index from 0 to no_good_baskets-1 are good in the baskets array
rand int in [0..MAX_BASKETS] num_good_baskets;

}

Constraint efficiency – a complex solution

© 2023 Accellera Systems Initiative, Inc.41

action setup_isolation {

// This array is one isolation profile that would use all columns
rand array<array<int in [-1..NO_OF_COL-1], NO_OF_COL>,NO_OF_COL> isolation_profile;
rand array<int in [-1..NO_OF_COL-1], NO_OF_COL*NO_OF_COL> col_index;

rand int in [1..NO_OF_COL] no_of_groups;
rand array<int in [0..NO_OF_COL], NO_OF_COL> group_sizes;

rand int in [0..NO_OF_COL-1] columns[NO_OF_COL];
constraint unique {columns};

constraint group_sizes.sum() == NO_OF_COL;

constraint foreach (group_sizes[i]) {
if(i >= no_of_groups) {

group_sizes[i] == 0;
} else {

group_sizes[i] >= 1;
}

}

constraint col_index[0] == 0;

constraint foreach (g:isolation_profile[i]) {
if(group_sizes[i] > 0) {

if(i < no_of_groups) {
foreach (g[j]) {

if(j < group_sizes[i]) {
if(i ==0 && j == 0) {

col_index[0] == 0;
}
else {

col_index[i*NO_OF_COL + j] == col_index[i*NO_OF_COL + j - 1] + 1;
}

}
else {

col_index[i*NO_OF_COL + j] == col_index[i*NO_OF_COL + j - 1];
}

}
}

}
}

constraint foreach (g:isolation_profile[i]) {
if(i < no_of_groups) {

foreach (g[j]) {
if(j < group_sizes[i]) {

g[j] == columns[col_index[i*NO_OF_COL + j]];
}
else {

g[j] == -1;
}

}
}

}

constraint foreach (g:isolation_profile[i]) {
if(i >= no_of_groups) {

foreach (g[j]) {
g[j] == -1;

}
}

}

exec post_solve {

printf("################ Isolation profile ##################\n");
printf("No of isolated col groups: %d\n", no_of_groups);
foreach (g:isolation_profile[i]) {

if(group_sizes[i] > 0) {
outf("(");

foreach (g[j]) {
if(j < group_sizes[i]) {

outf("%d,",g[j]);
}

}
}

}
}

};

0 1 2 3
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1

[0, 1, 2, 3]

2D array of valid groups

Constraint efficiency:
a simple efficient solution

© 2023 Accellera Systems Initiative, Inc.42

// Stores the last column of an isolation group
rand array <int in [0..MAX_ISOLATION_GROUPS-1], MAX_ISOLATION_GROUPS> last_elem_of_group;

// Used for forcing DMAs into isolations so they aren't empty if we want
rand int in [1..MAX_ISOLATION_GROUPS] num_nonempty_groups;

// Ensure groups are continuous and don't skip over each other
constraint foreach(gb:last_elem_of_group[i]) {

if(i < MAX_ISOLATION_GROUPS-1) { // Only look at valid isolation groups
if(i < num_nonempty_groups-1) { // Only look at non-empty groups

// last column of a group must be less than last column of the next group
last_elem_of_group[i] < last_elem_of_group[i+1];

}
else {
// group everything that is not valid
last_elem_of_group[i] == last_elem_of_group[i+1];

}
}

}
// Last element of the last isolation group must be the last column
constraint last_elem_of_group[MAX_ISOLATION_GROUPS-1] == MAX_ISOLATION_GROUPS-1;

Compact representation
of the solution

3 X X X

Last element of group

[0, 1, 2, 3]

One group of all columns

Constraint space comparison

© 2023 Accellera Systems Initiative, Inc.43

0 1 2 3
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1

3 X X X

0 -1 -1 -1
1 -1 -1 -1
2 -1 -1 -1
3 -1 -1 -1

[0], [1], [2], [3]

[0, 1, 2, 3]

0 1 2 3

0 1 -1 -1
2 3 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1

1 3 X X

0 -1 -1 -1
1 2 -1 -1
3 -1 -1 -1
-1 -1 -1 -1

[0], [1, 2], [3]

[0, 1], [2, 3]

0 2 3 X

2D array of valid groups 2D array of valid groupsLast element of group Last element of group

The symmetry of the solution space presents a bigger search space for constraint solver

Constraint - conclusion
 Design symmetry-free solution space when possible

- Only one possible representation of the solution in the constraint model

 Minimize action inference for test writer interface actions
- If a compound action always causes inference of another action, add that action explicitly

 Use explicit binds where possible
- Usually, a constraint solver is used for the possible binding of inputs and output
- Explicit binding reduce constraint complexity

 Avoid chaining of complex constraints from input to output
- For example, avoid, constraining all output flow object fields except a few equal to input flow object fields

 Design PSS model to only expose important random attributes to the next integration level
- A poorly designed constraint model could easily overwhelm current and future constraint solvers
- Only allow free random attributes at system-level that are important for system-level tests

© 2023 Accellera Systems Initiative, Inc.44

PSS METHODOLOGY
A language can only do so much

© 2023 Accellera Systems Initiative, Inc.45

PSS methodology - call to action
 Create industry-wide PSS methodology library like UVM

- Common types to facilitate smooth multi-IP and third-party integration
- Support virtualization and address translation to work across IPs including third part IPs

 Create high-level open action libraries for the standard protocols that work across vendors
- PCIe, CXL, UCIe, etc.

 Create a forum for community-maintained design patterns
- For example, Power state transitions with interleaved traffic

 Publish best practice guidelines
- Constraint modeling
- Code structuring

 Improve PSS action export methodology for use in the production firmware

© 2023 Accellera Systems Initiative, Inc.46

PSS deployment strategies
 Start small and provide immediate value

- Refactor initial design to create a first-class PSS model

 Starting a PSS project at any integration level is good
- SoC with processors

- It’s difficult to create random, multi-IP tests manually in C for the processors
- Use PSS for random, multi-engine functional, stress, and power tests

- Sub-system UVM and/or SystemC
- New tests can be created quickly. Reduced boilerplate for tests
- Scenario randomization as compared to data randomization
- Focus on describing system rules and encapsulated functionality then use PSS automation to create new tests

- IP
- PSS allows better reasoning of resource modeling and config space for an IP (see DVCON US 2022 presentation)
- PSS-based portable programming sequences help your friends at SoC and post-silicon (if they are friends)

© 2023 Accellera Systems Initiative, Inc.47

Conclusion
 Reduced test development costs with portability

- IP programming sequence can be used in post-silicon bring-up, validation, and manufacturing tests
- PSS enables the rapid creation of complex tests that identify functional, power, performance, and firmware bugs in

heterogeneous multi-processor systems through randomized, multi-IP testing

 PSS improves communication among Architecture, Firmware, DV, and Post-silicon teams
through formal high-level language, leading to fewer bugs
- Describe and share SoC configuration, Inter-IP initialization, and power sequencing at high-level
- The PSS language allows for effective communication through its semantics and constructs, serving as an

executable specification

 Better post-silicon bring-up and validation
- Generate a range of tests, from simple to complex, in thousands, for effective bring-up, validation, and optimization
- Collect generation-time and runtime reports to demonstrate and analyze coverage

 Creating new tests is fun with PSS
- Reduced friction for creating new tests, especially multi-IP tests

- Understanding every detail of SoC is not required with PSS partial scenario specification
- Improved productivity is personally satisfying for engineers

© 2023 Accellera Systems Initiative, Inc.48

Q & A

Approaches and Challenges to Scalable Modeling
DVCon 2023

Mike Chin, Principal Engineer, Intel Corporation
(michael.a.chin@intel.com)

Motivation/Need for Portable Stimulus
 Lower ramp up cost for new validation engineers

- Simplify content creation
- Hide complexity - realization layer
- Drive efficient productivity!

 Grow expertise from “user” to “power user”
- User – verification engineer
- Power users – model developers, backend developers, debuggers

 “Correct by construction” validation content
- Drive accurate modeling to ensure test content correctness through implicit actions

© 2023 Accellera Systems Initiative, Inc.51

Portable Stimulus has the promise to accelerate verification
through ease of creation and accuracy of verification content!

Challenges to Scalable Modeling
- Premise
- Pace of innovation, complexity of design

continues to increase
- Verification resources (at best!) remain

constant
- How do we effectively validate across the

continuum?

© 2023 Accellera Systems Initiative, Inc.52

IP ->
Subsystem ->
SoC

Model Use Cases
(Focused -> Random -> AI)

Feature
Enhancements/
Changes

Testbench/
Realization

Layer

Platform Configuration/
Attached Devices

How do we comprehend this problem?
What methodologies can we use to
maximize development ROI?

Our Modeling Problem
Simple state machine IP
States:
 On
 Ready
 Off

- Support 2 independent FSM instances

© 2023 Accellera Systems Initiative, Inc.53

1 package dvcon2023 {

2 enum fsm_state { On, Off, Ready };

3 state state_t {

4 fsm_state cacheState;

5 };

6

7 component BasicIP {

8 pool state_t fsmState;

9 action PowerUp {

10 output state_t outState; constraint outState == On;

11 };

12 action PowerDown {

13 input state_t inState; constraint inState == Ready;

14 output state_t outState; constraint outState == Off;

15 };

16 action Initialize {

17 input state_t inState; constraint inState == On;

18 output state_t outState; constraint outState == Ready;

19 };

20 action Read {

21 input state_t inState; constraint inState == Ready;

23 output state_t outState; constraint outState == Ready;

24 };

25 };

26 };

How do we create scalability in our model?
How do we deal with the same model

executing on different platforms?
Enhancements for a new project?

Base Model + Extend vs. Override

 Actions:
 PowerUp
 PowerDown
 Initialize
 Read

Extend vs. Override in modeling logic

“Base” model
- Reusable, core modeling logic

consisting of:
- Actions
- Buffers, Streams, States
- Resources, pools

- Scalable models address different
execution platforms, model
configurations, and use cases
- A scalable realization layer is challenging to

implement

How do we build reusability
and scalability into our
models?
- Use SW best practices!
- Extend models

- Support new capabilities through “extend”
language syntax

- Override settings
- Constrain model settings to reflect

project/configuration values

© 2023 Accellera Systems Initiative, Inc.54

Extend
 Use to support capabilities not present in

the base model
- Optional features/New enhancements
- Platform-specific configuration support
- SoC/Subsystem integration

 Support for new logic capabilities
- Actions
- Enum/struct members
- Resources

© 2023 Accellera Systems Initiative, Inc.55

1 package dvcon2023 {

2 extend enum fsm_state [Busy];

3 extend component BasicIP {

4 action Write {

5 input state_t inState; constraint inState == Ready;

6 output state_t outState; constraint outState == Busy;

7 };

8 action PollCompletion {

9 input state_t inState; constraint inState == Busy;

10 output state_t outState; constraint outState == Ready;

11 };

12 };

13 };

Override
 Configurable parameters in the base model

that are overridden per project/configuration
- Number of subdevice instances
- Agent count
- Target types

 Additional constraints to specify component
variable value ranges or specific values
- Base models must be written to be configurable!

© 2023 Accellera Systems Initiative, Inc.56

// Platform 1 (Post-si)

1 package dvcon2023 {

2 extend component BasicIP {

3 function IPPowerDown();

4 };

5 extend action BasicIP::PowerDown {

6 exec body { comp.IPPowerDown(); }

7 };

8 };

// Platform 2 (Pre-si testbench)

1 package dvcon2023 {

2 extend component BasicIP {

3 function SidebandShutOffClocks();

4 function SidebandVerifyControllerPowerState();

5 action PreSiPowerDown : PowerDown {

6 exec body {

7 comp.SidebandShutOffClocks();

8 super;

9 comp.SidebandVerifyControllerPowerState();

10 }

11 };

12 };

13 };

Challenges to Extend vs. Override

Realization Layers
- Scalable support for all permutations:

- Model scope (IP -> Subsystem -> SoC)
- Platforms

- Devices
- Traffic generators

- Use cases (focused tests, randomization,
AI)

- Extend/Override mechanisms need to
be carefully managed!

Base vs. Extend vs. Override
- Extend/Override are useful

mechanisms for expanding model
support

- When do we make the decision to put
something back into the base model?

© 2023 Accellera Systems Initiative, Inc.57

Challenges to Scalable Modeling
Modeling capabilities

- Dynamic hardware problems still pose
challenges to scalable modeling
- Dynamic bandwidth calculation/throttling
- Reconfigurable transport layer modeling

Vendor/use case specialization
- Working in 2 languages is

cumbersome
- Language support for vendor tool

capabilities
- Randomization tools
- AI workflows/tools

Scalable Subsystem/SoC
support
- Intuitive model composition with

multiple IP models
- Layered support for subsystem/SoC

features

Input collateral for model
configuration
- Leveraging non-PSS config files
- Convert to PSS is the only option

© 2023 Accellera Systems Initiative, Inc.58

Summary - Challenges to Scalable Modeling
 Premise

- Pace of innovation, complexity of design
continues to increase

- Verification resources (at best!) remain constant

© 2023 Accellera Systems Initiative, Inc.59

IP ->
Subsystem ->
SoC

Model Use Cases
(Focused -> Random -> AI)

Feature
Enhancements/
Changes

Testbench/
Realization

Layer

Platform Configuration/
Attached Devices

Modularity modeling approaches supported by
PSS drive efficient reusability and scalability

across a wide variety of verification challenges!

Q & A

Panel Discussion

	User Experiences with the Portable Stimulus Standard
	The Biggest Change
	Introducing Behavioral Coverage (WIP)
	Behavioral Coverage Tracking
	Solve/Runtime Messaging
	Solve/Runtime Messaging
	List randomization
	Procedural randomization statement
	Dist randomization constraint
	Labels as action handles
	Inference Issue
	Inference For “Atomic” Block
	Concise read-modify-write
	Additional New Features
	AI Engine Subsystem Verification With PSS
	Agenda
	Introduction
	Circuit-switched DMA
	AI sub-system
	Testbench environments
	Verification Challenges
	PSS First steps
	An AIE Test
	PSS first steps for AIE project
	PSS model integration
	AIE IP PSS Integration
	AIE Subsystem PSS integration
	SoC PSS integration
	First-class PSS model
	Slide Number 30
	PSS model
	PSS model
	Test composition
	Test API design process�dma_compute2compute
	Test API design process�dma_compute2compute
	Test API – building block actions
	Constraints
	Constraint efficiency
	Constraint efficiency – example problem
	Constraint search space
	Constraint efficiency – a complex solution
	Constraint efficiency:�a simple efficient solution
	Constraint space comparison
	Constraint - conclusion
	PSS Methodology
	PSS methodology - call to action
	PSS deployment strategies
	Conclusion
	Q & A
	Approaches and Challenges to Scalable Modeling�DVCon 2023
	Motivation/Need for Portable Stimulus
	Challenges to Scalable Modeling
	Our Modeling Problem
	Extend vs. Override in modeling logic
	Extend
	Override
	Challenges to Extend vs. Override
	Challenges to Scalable Modeling
	Summary - Challenges to Scalable Modeling
	Q & A
	Panel Discussion

