
AFCML: Accelerating the Functional Coverage

through Machine Learning within a

UVM Framework
Syed Jawad Shah, Majeed Ahmed, Muhammad Imran, Haroon Waris, Nasir Mohyuddin,

Mahboob Ur Rehman

{sshah.msee22seecs, mahmed.msee18seecs muhammad.imran1}@seecs.edu.pk,

{haroonwaris, nasir.mohyuddin, chudrymahboob}@gmail.com

National University of Science & Technology (NUST), Pakistan
ABSTRACT- As system complexity continues to increase, there is a growing need for more effective verification

methods. This work proposes a novel solution to tackle this issue by leveraging machine learning techniques, including

K-means++ clustering, to pinpoint the most relevant stimuli from a broad set for a particular design within the UVM

environment. By examining the design's features and the effects of various stimuli, the machine learning system will

strategically choose and generate the most impactful stimuli, thereby enhancing the efficiency of the verification

process. With the deployment of the machine learning model, improvements in transaction efficiency by 49 percent

and a notable decrease in the time needed to reach complete functional coverage were observed.
I. INTRODUCTION

The rapid advancement in semiconductor technology has significantly escalated the complexity of Integrated Circuit

(IC) designs. Functional verification, which ensures that the design under test (DUT) behaves as expected under all

possible circumstances, accounts for nearly 70% of the overall design effort [1]. Even with improvements in

verification techniques, the quest for full functional coverage closure is still an ongoing struggle especially where

designs are becoming more complex. The Universal Verification Methodology (UVM) has become a standard

framework to create scalable, modular, and reusable, verification setups. Yet even with its organized approach, UVM-

based setups still depend a lot on constrained random stimulus creation. This approach may result in repetitious or

useless stimuli that extend simulation times longer than required [2].

The main challenge is to complete verification, making sure all possible design specifications have been verified

without making and running redundant test cases that waste valuable simulation resources. As industry struggles with

the demand for high performance and power-efficient chips, smart solutions have become imperative to improve the

efficiency of the verification process. One such solution involves adding machine learning (ML) techniques to

verification setups. The ability of ML to analyze large data sets, recognize patterns and make data driven decisions

brings a tremendous opportunity to enhance generation of effective stimulus and reduce the number of simulation

cycles, required to achieve full functional coverage.
Machine learning methods are widely used to improve the verification process, as also reported by existing studies. In

[3] researchers implemented classification in a homeomorphism algorithm to suppress repeating stimuli, with which

covering cases are detected to shrink dynamic stimulus generation on Godson-2 processor workload (62.5% usages).

Similarly, [4] used an unsupervised support vector analysis model to achieve a 65.3 % test count reduction on ALU

but with regards to complex designs further validation was recommended against.

An artificial neural network (ANN) to partition and prioritize the assertions-based stimuli for execution, achieving a

24.5x simulation speedup on CPU tests while requiring only 60% of the stimuli is presented in [5]. Furthermore, [6]

showed that word-level assertions result in more comprehensible and efficient code coverage; offering the same 90%

input coverage while writing half as much new lines, with less bugs founded on a commercial SMP (Symmetric multi-

processing) processor. Finally, K-means clustering was used to segment the signals making it much easier for existing

bug detection methods to identify design errors earlier in time by exploiting non-frequent triggered signals that were

clustered out (21%−40% shorter bug-detection times across multiple DUTs) with broader applicability into different

companies [7].

The proposed study builds on existing work by introducing a new verification framework. It combines machine learning

methods, like K-means++ clustering and decision trees, with the UVM environment. Choosing the K-means++ for its

speed, simplicity, and improved initialization over other clustering algorithms, along with its scalability compared to

hierarchical and density-based methods, making it ideal for clustering large, high-dimensional datasets typically

encountered in IP verification environments. The framework aims to handle the creation and running of stimuli. It

groups them based on how they affect coverage and predicts which ones will lead to full coverage closure. Unlike

previous methods that often saw stimuli as separate units, the clustering approach used here allows the framework to

group similar stimuli. This enables more targeted testing of areas that haven't been verified yet. The study then uses

decision trees, which are easy to understand and explain, to predict if a particular stimulus will contribute to coverage

or not. It gives priority to those that will and less importance to those that won't.
The main contributions of this work is development of a three-stage machine learning pipeline that improves the UVM-

based verification process as follows:

1. Test Classification: Classify tests based on the variables that are being randomized, this allows us to group

similar types of tests and analyze them more effectively.

2. Unsupervised Clustering: The stimuli are clustered automatically in K-means++ clustering according to their

functional coverage attributes and should enable the verification environment to concentrate on areas of DUT that

remain unverified.

3. Prediction of Functional Coverage: Using decision trees to predict when stimuli in a cluster will hit uncovered

coverage points can make the process deterministic and reduce waste generation from generating redundant

motivations.

We have evaluated the proposed framework through a set of experiments on AHB-Lite (Advanced High-performance

Bus) DUT and improved both verification efficiency, as well as coverage closure time. While running the machine-

learning optimized UVM test bench, it eliminated most of the redundant stimuli and used scarce simulation resources

for high-priority access sequences leading to a maximum 49.7% reduction in verification time.

The remainder of this paper is structured as follows: Section II outlines the contributions made by this research work,

Section III presents the results, highlighting the improvements achieved through the proposed approach. Finally,

Section IV concludes the paper and suggests areas for future research.

II. CONTRIBUTION

For efficient verification methodology, the primary challenge lies in identifying an intelligent method to apply stimuli

that maximizes functional coverage while minimizing the number of transactions and simulation time. To address this

very challenge, this research demonstrates the use of machine learning (ML) techniques to address the following key

questions:

i. Can machine learning techniques effectively generate and prioritize stimuli to achieve higher functional

coverage with fewer transactions?

ii. Is it possible to apply stimuli in a specific order, based on their effectiveness, to maximize functional coverage

closure in a shorter time?

iii. How can we integrate machine learning into the verification process to apply effective stimuli in a specific

order during run-time?

iv. What types of feedback mechanisms or metrics can be used to guide and adjust stimuli application,

dynamically during verification?

Before diving into the novel integrated machine learning model, we’ll briefly cover the DUT and the UVM

environment to provide context. This includes a quick overview of the design’s key functions and the structure of the

verification environment, which will help illustrate how the new model improves the verification process.

A. Design Under Verification (DUV)

 The Advanced High-performance Bus (AHB), which we generated from [8] is specifically designed for high-

performance systems, supporting multiple bus masters and high-bandwidth operations. A typical AMBA system setup

includes an AHB master, AHB slave, AHB arbiter, and AHB decoder. In an AHB system, masters are responsible for

initiating transactions, while slaves respond based on the incoming requests. Only one master can access the bus at a

time, so each must request access (grant) and wait its turn in line with the arbitration process before it can initiate a

transaction. But the scope of this research effort is not limited to the AHB, but can be implemented on any Intellectual

Property (IP).

B. UVM Verification Environment

The pillars of verification are foundational to ensure that a design’s intent, initially captured at the Register

Transfer Level (RTL), is accurately realized. This process involves applying a carefully selected set of stimuli to target

specific areas of the design and then verifying if it behaves as expected. Simulation continues until all critical and

significant scenarios in the design space are verified for correct functionality. Figure 1 illustrates these pillars of

verification.

 Figure 1: Pillars of Verification

Our verification environment, developed in Mentor Questa Sim Version 10.6, is structured into three key parts to ensure

effective testing and validation of the design. First, we use an agent to simulate behavior of a master, to initiate

transactions and produce control signals. Next comes slave agent which replicates that slave behavior, it will respond

to requests based on the data received. In between these two categories of agents are the specialized components that

facilitate critical functions like sampling and transaction driving, assertion checking to ensure that expected behavior

is exhibited, and coverage data is being collected.
Figure 2 illustrates how a typical UVM Verification Environment works. The master agent generates signals, which

are sent to the DUT through a dedicated interface. Similarly, slave agent receives its input from an interface connected

to the DUT. During testing, all signals exchanged between the agents and the DUT are carefully monitored. These

signals are sent to a scoreboard that checks their validity, ensuring the design behaves as expected. Additionally,

functional coverage data is collected throughout the process to confirm that all important scenarios have been tested.

This structured approach not only improves the reliability of the design but also helps catch potential issues early on.

Figure 2: UVM Verification Environment

A. Test Plan

Our tests are grouped into two main categories: normal constrained random tests and directed tests. We’re focused

on testing specific AHB functionalities to gather timing results rather than verifying all features. Once we have

these results, we plan to enhance them using machine learning techniques. Only the normal tests will be optimized

with machine learning, as the directed tests are straightforward and do not require further enhancement. In random

test, we will be focused upon bus request test, which is simpler one and the purpose of this test to check for

masters acquiring their grants for certain times for different stimulus.

B. Machine Learning Model

Our novel ML model consists of three stages, each utilizing different machine learning techniques. First, we

categorize tests into groups based on the main variables being randomized. This groups similar tests together, as

tests focused on "read" operations, for instance, will likely have closer coverage metrics than those testing protocol

implementation. Next, we cluster stimuli into several groups based on coverage-related variables. Finally, after

training our model on tests within each class, we predict whether each stimulus will achieve coverage within its

respective cluster. Figure 3 shows our verification environment with the integrated ML model, where stimuli flow

to the model, which then decides if they should be executed.

Figure 3: Verification Environment after ML Enhancement

1). Stage 1: Classifying Tests

In the first stage of our model, incoming stimuli are sorted into specific categories. Predicting success across

all stimuli for various tests is challenging, as each test has a unique purpose. Classifying tests, however, is

straightforward and doesn’t require ML; a verification engineer can easily handle this. By using simple coding,

we determine which tests focus on specific inputs and instruct the system to create test classes accordingly.

2). Stage 2: Unsupervised Machine Learning

In the next stage, we independently cluster stimuli into ‘k’ clusters for each test class. Here, stimuli are

clustered based on data relevant to the functional coverage process, grouping similar items to improve the

accuracy and efficiency of coverage predictions. Figure 4 presents coverage against random stimuli, while

Figure 5 illustrates the creation of different clusters using K-Means clustering.

Figure 4: Tracking Coverage Responses to Random Stimuli

Figure 5: Clustering Similar Stimuli for Pattern Recognition

 3). Stage 3: Supervised Machine Learning

The third and final stage of our model focuses on predicting coverage for each cluster of stimuli. Predicting

coverage on a cluster level is beneficial, as similar stimuli generally target similar coverage areas. Stimuli

predicted to meet coverage requirements are run first; if these don’t achieve 100% coverage, the remaining

stimuli are executed. This way, if our predictions are less accurate for a particular test, all stimuli still get run

just in a different order. Redundant stimuli are also identified and queued last, ensuring efficiency. Figure 4

illustrates this third stage. For this stage, we’ll use decision trees, as they have a fast-learning rate. While more

complex models like Deep Neural Networks (DNNs) could capture intricate relationships or uncover hidden

features, and Recurrent Neural Networks (RNNs) could handle sequence dependencies, a decision tree is

sufficient for our current tests. Our main goal is to prototype this approach and assess its effectiveness,

allowing room for more advanced models in future refinements.

Figure 6: Coverage Prediction

A. Running Mechanism in the UVM Environment After ML Enhancement

Our verification environment is inspired by the principles of Coarse Grain Multi-threading, applying similar logic

to manage cluster-based testing. In Coarse Grain Multi-threading, a controller issues new instructions from a

single thread each clock cycle until it encounters an instruction with a long wait time, prompting it to switch to a

new thread.

In our verification setup, we typically have four coverage-predicted clusters. We run stimuli from a file until we

encounter two consecutive stimuli that don’t change coverage, at which point we switch to the next file. This

approach keeps testing efficient, reducing time spent on stimuli less likely to reach coverage and maintaining a

streamlined testing flow.

III. RESULTS

The experimental results of this research demonstrate the significant advantages of integrating machine learning

techniques into the UVM framework. This section analyzes performance improvements in terms of functional

coverage closure, reduction in simulation cycles, and time savings achieved through the machine learning driven

verification environment. Figure 5 illustrates the comparison between coverage and the number of transactions. In the

conventional UVM approach (without ML), 100% functional coverage is achieved after 1997 transactions. However,

with the introduction of the ML model, the same functional coverage is obtained in just 1003 transactions, reflecting

a substantial reduction in the number of stimuli required.

Similarly, Figure 6 highlights the comparison between coverage and simulation time. By integrating ML, the total

simulation time is reduced to 10,016 ns, representing an approximate improvement of 49.7% compared to the non-

ML approach.

Figure 7 presents a detailed summary of these results, showcasing how the machine learning model significantly

enhances overall verification efficiency by reducing both the transaction count and simulation time while maintaining

full coverage. These results emphasize the effectiveness of ML in streamlining the functional verification process,

providing a more efficient solution for complex IC design validation.

Figure 7: Comparison b/w Coverage and Transactions

Figure 8: Comparison b/w Coverage and Simulation Time

Figure 9: Coverage Closure with ML and without ML

The experiments primarily focused on verifying the improvements introduced by the three-stage machine learning

pipeline test classification, K-means++ clustering, and decision tree-based functional coverage prediction. The results

are compared against a baseline UVM environment that relied on constrained random testing (CRT) without machine

learning assistance.

A major improvement is noted in the time it took to achieve coverage closure. In conventional verification settings that

utilize constrained random stimulus generation, reaching complete coverage often demands many simulation cycles.

Nevertheless, the ML-augmented framework minimized the number of cycles needed by strategically focusing on

stimuli that is more probable to aid in coverage.

On average, the UVM environment driven by machine learning decreased the total time for coverage closure by 10%

to 49.7%, varying with the DUT's complexity. For simpler AHB-Lite configurations that had fewer master-slave

interactions, coverage is achieved in 30% fewer cycles. In more complex cases, including locked transactions or error

injections, the reduction in coverage closure time is even more significant, achieving up to 49.7%.

The decision tree models, which are trained using initial coverage data, can accurately predict coverage-hitting stimuli

in over 85% of cases. This prediction capability significantly reduced the generation of redundant stimuli and ensured

that the verification environment focused on areas that had not yet been fully explored.

From the experimental results, using machine learning in UVM saves a huge amount of time during verification to avoid

generating unnecessary stimuli and gives an easier way for faster coverage closure. The use of the decision tree model

for classifying and providing predictions on the covering hitting stimuli is made possible through the K-means++

algorithm, which offers an all-embracing but concentrated verification method. However, some random tradeoffs must

be considered. One of the key disadvantages is that the first training phase in implementing the decision tree model is

somewhat more time-consuming to simulate in the beginning stage for larger and more complex designs for the model.

IV. CONCLUSION

In this paper, we proposed a machine learning-enhanced UVM environment applied to the AHB-lite framework. Our

machine learning approach combines K-means++ clustering and decision tree-based method to select and execute

effective stimuli in a specific order. The effectiveness of a stimulus is determined by its contribution to achieving

higher functional coverage. By implementing this machine learning strategy, we successfully reduced functional

coverage closure time by 49.7%. Further enhancements could be achieved by incorporating more advanced machine

learning techniques, such as deep neural networks (DNNs) or reinforcement learning, to address more complex

verification scenarios. Additionally, establishing real-time feedback between the machine learning models and the

UVM environment could significantly improve the dynamism of stimulus generation, allowing for more adaptive and

efficient testing processes. This integration would enable the system to learn from ongoing test results and adjust

stimulus strategies, accordingly, leading to even better functional coverage and performance outcomes. This

significant improvement demonstrates the potential of machine learning in the design verification domain and offers

encouragement to future researchers in this field.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to Mr. Mahmoud Tamer (The German University in Cairo) for his

instrumental support in broadening the scope of this work. The research exhibition is a testament to his dedicated

efforts in developing the research community. Additionally, we would also like to acknowledge the valuable

contributions of our friends, whose thoughtful reviews have enriched this paper.

REFERENCES

[1] R. Klein and T. Piekarz, "Accelerating functional simulation for processor based designs," Fifth International

Workshop on System-on-Chip for Real-Time Applications (IWSOC'05), Banff, AB, Canada, 2005, pp. 323-328, doi:

10.1109/IWSOC.2005.34.

[2] N. Kitchen and A. Kuehlmann, "Stimulus generation for constrained random simulation," 2007 IEEE/ACM

International Conference on Computer-Aided Design, San Jose, CA, USA, 2007, pp. 258-265, doi:

10.1109/ICCAD.2007.4397275.

[3] Q. Guo, T. Chen, H. Shen, Y. Chen and W. Hu, "On-the-Fly Reduction of Stimuli for Functional

Verification," 2010 19th IEEE Asian Test Symposium, Shanghai, China, 2010, pp. 448-454, doi:

10.1109/ATS.2010.82.

[4] O. Guzey, L. -C. Wang, J. Levitt and H. Foster, "Functional test selection based on unsupervised support vector

analysis," 2008 45th ACM/IEEE Design Automation Conference, Anaheim, CA, USA, 2008, pp. 262-267, doi:

10.1145/1391469.1391536.

[5] Fanchao Wang, Hanbin Zhu, Pranjay Popli, Yao Xiao, Paul Bodgan, and Shahin Nazarian. 2018. Accelerating

Coverage Directed Test Generation for Functional Verification: A Neural Network-based Framework. In Proceedings

of the 2018 Great Lakes Symposium on VLSI (GLSVLSI '18). Association for Computing Machinery, New York, NY,

USA, 207–212. https://doi.org/10.1145/3194554.3194561

[6] L. Liu, C. -H. Lin and S. Vasudevan, "Word level feature discovery to enhance quality of assertion mining," 2012

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2012, pp. 210-217.

[7] Eman Mandouh and Amr G. Wassal. 2018. Application of Machine Learning Techniques in Post-Silicon

Debugging and Bug Localization. J. Electron. Test. 34, 2 (April 2018), 163–181. https://doi.org/10.1007/s10836-018-

5716-y

[8] Adki/gen_amba_2021: Amba bus generator including Axi4, Axi3, AHB, and APB, GitHub. Available at:

https://github.com/adki/gen_amba_2021.

