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Abstract - A typical VLSI implementation starts from a logical or architectural view of the design in RTL, where 

multiple building blocks are connected without considering physical constraints. This view then goes through a series of 
modifications required to meet structural design (SD) and manufacturability needs. While some of these modifications 
enjoy automation through industry standard EDA tools (e.g., DFT insertion), majority of them are currently 

implemented manually by designers and are considered regular design activity. To make matters worse, some of these 
steps often need to be repeated based on the feedback from the downstream consumers of the design. In this paper we 
demonstrate that, with the recent advancements of the EDA industry, many of these activities can now be automated in 

the form of RTL Transformation. Such transformations include, but are not limited to, Physical Hierarchy restructuring, 
Feedthrough/Tie-off/Repeater insertion, Clock/Reset re-distribution, Fuse isolation etc. Our methods combine user spec 
and home-grown code with industry standard EDA tools to achieve RTL transformations on the fly as part of the RTL 

generation flow.  This is a paradigm shift in RTL development, resulting in order of magnitude improvement in design 
turn-around time (TAT). We describe several applications/transformations from a production use case where multiple 
weeks of design work have been either fully eliminated or reduced to a fraction of the original TAT, depending on the 

type of the transformation. We also present various best-known methods (BKMs) and gotchas that need to be considered 
while performing RTL transformations to achieve the best results, given the current state of the EDA tools. 

I.   INTRODUCTION 

An RTL design goes through various updates before an architectural view of it can be ready for consumption for 

structural design processing, where it is synthesized into a netlist, placed/routed, and combined with other collaterals 

to form the final GDS database for manufacturing. These updates include Hierarchy restructuring, Feedthrough/Tie-

off/Repeater insertion, Clock/Reset re-distribution, Fuse isolation etc., and are typically considered as regular design 

activity. Some of these activities are often repeated due to incremental feedback from the downstream consumers of 

the design and contribute to several weeks of TAT in the entire design cycle [1, 2]. 

In this paper, we demonstrate that with the latest advancements in the EDA tools, it is now possible to automate 

these activities in the form of RTL transformation. Figure 1a shows the key concept - how the user spec and 

home-grown high-level APIs are used in conjunction with a vendor tool and its low-level APIs to perform effective 

RTL transformations automatically. Figure 1b shows how RTL transformation fits in the overall design cycle. We 

start with an architectural view of the RTL, which goes through various transformations until it’s ready to be handed 

off for SD activities. SD team can perform additional transformations without any coordination with the RTL team 

to generate the final RTL view that goes through the rest of the design process to produce GDS for manufacturing. 
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Figure 1a: Spec-based automated RTL Transformation 
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Figure 1b: RTL Transformation in the overall design cycle  
(Automated, correct-by-construction, performed in sequence) 

 

 



II.   AUTOMATED RTL TRANSFORMATION 

A. Upfront considerations 

Repetitive work with simple spec: Any update to RTL that could be defined in a machine-readable spec is a 

candidate for automated RTL transformation. However, the best choices are generally those where such a spec is 

significantly simpler to write than to manually update the RTL itself, and where the updates may need to be applied 

more than once.  

Maturity of the underlying tool: The maturity of the underlying EDA tool is a major factor to consider. It not 

only needs to be capable of reliably handling the transformations, but also needs to be able to parse different 

possible variations of the input RTL and to generate RTL that will be consumable by all downstream tools.  

In-house development of high-level APIs: Another major issue to consider is the need to develop in-house APIs 

to augment vendor tool APIs. We found it necessary to do so to facilitate concise user spec and, in some cases, to 

post-process the tool-generated RTL to make it consumable by various tools (e.g., by adding ifdef statements into 

the generated RTL). 

Validation of tool-generated RTL: Next major thing to consider is how to validate the generated RTL, which is 

supposed to be correct by construction. We used both simulation and FEV methods. 

 

B. Major applications 

    Hierarchy Restructuring:  Modifying the hierarchy of a design is required in the development flow to achieve 

specific goals at different areas such as validation and structural design. The most common one being to create 

hierarchies that satisfy specific flow requirements. Structural design hierarchies are typically grouped according to 

the physical location that they are intended to have, this way processes like timing convergence and floorplanning 

can be done at a higher level than the hardening target used for synthesis, place and route. In contrast, validation 

flows are typically executed on single modules or groups of modules that are associated by their functionality 

instead of their physical location. Transformation flows prove to be particularly effective taking a base input RTL 

and generating different outputs targeted for hardening and validation that use different arrangement of units for the 

same design. Figure 2 shows an example of this scenario for a design that contains non-synthesizable modules that 

are included only on validation targets. 

    In structural design, restructuring hierarchy is primarily done to generate designs that contain the ideal number of 

units to balance runtime and quality of results obtained from design automation tools. The gate count associated to 

modules present in a given design has a direct impact in the resources required by design automation tools to 

perform their tasks. Having small designs can lead to faster throughput times but may underutilize the potential of 

the tools. Overly large design may take advantage of tools capacity at the expense of larger runtimes. The flexibility 

to group designs and move modules between hierarchies through transformation flows enables exploration of 

arrangements that can achieve an optimal balance between runtime and benefits obtained from the DA tools. 

Transformations can be automated to perform movement of module instances between hierarchies with a single line 

of code, as represented in Figure 3, where a simple spec can be processed by the flow to move one unit between 

hierarchies and reduce the number of physical ports and wires required between units. 

 

           

 
 

Figure 2 Hierarchy restructuring to generate RTL models consumed by structural design and validation flows 
      



 
Figure 3: Hierarchy restructuring to reduce routing congestion 

  

    After the RTL is handed off to the backend team, transformation flow can be used in a limited way to perform 

additional hierarchy restructuring.  One example of this usage model is when the design contains multiple top-level 

blocks delivered by multiple IP teams using different RTL design environments.  Each top-level block contains SD 

partitioned hierarchies created by the transformation flow, but further movement of these partitioned hierarchies 

across different RTL design environments is not possible.  SD team can optimize the floorplan further by using the 

transformation flow to move partitioned hierarchies from different IP’s top-level blocks and create the final SD RTL 

for implementation without coordination with RTL teams.  This kind of SD transformation will not have simulation 

validation coverage and are limited to those that can be fully covered by Low Power Formal Equivalence 

Verification.  

    The creation of multiple-instantiated (MI) blocks and uniquification of MI instances for exceptions handling is 

also achieved through transformation flows to meet special SD requirements without requiring design team effort. 

During early phases of a project, SD team can use the transformation flow to do floorplan explorations. For example, 

when hierarchy restructuring results in two or more physical hardening targets with the same content, the 

transformation flow can update the reference modules to use a single MI macro design while retaining the IO 

connections to all the instances, which drastically reduces the physical implementation effort by optimizing the 

number of hardening targets in a project.  Figure 4 shows an example of macro hierarchy creation used to eliminate a 

hardening target in a design where two hardening targets have the same unit instances.     

    The reverse transformation of uniquifying existing macros can also be done if the floorplan requires different 

shapes for different instances of the macro. The finalized SD macro transformations are sent back to the design team 

and combined with other transformations to create the final signoff RTL to SD. Traditionally, the design team is 

required to invest significant effort in creating RTL to support early floorplan trials. Currently, the transformation 

flow enabled the SD team to do multiple iterations of floorplan explorations on its own, providing operational 

flexibility in the organization and significantly reducing the design team effort. 

    Feedthrough and Tie-off Insertion:  Feedthrough (FT) connections are needed in the RTL used by the 

hardening tools to reflect the reality of signals that that need to be routed through intermediate hierarchies/blocks 

without going through any functional changes to reach their destination. Design automation tools are capable of 

creating FT connections across instances of unique hierarchies; but doing so across instances multiply instantiated 

(MI) modules remains a challenge. Such cases require special handling in RTL to create ports and connections 

across multiple modules and ensure the inputs of all MI instances are properly driven, typically involving multiple 

people and taking turnaround time in the order of days to complete each time that changes are required. 

Transformation flows are able to operate on an architectural view of the design and generate the required ports, 

connections and tieoffs to be used on a physical view of the same design without requiring any modification to the 

input RTL, eliminating the overhead on the design team and reducing the turnaround time for RTL updates to the 

order of hours taken by the transformation developer to implement changes. Figure 5 shows an example of 

feedthrough insertion implemented through a specification-based transformation. 
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Figure 4: Hierarchy restructuring to create MI design 
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Figure 5: Feedthrough insertion to match physical placement requirement 

 

    The use of transformation flows to implement FT connections is also leveraged to include repeater flops in the 

paths created on the RTL in order to meet timing requirements across long distances. To achieve this, the 

transformations create RTL that uses a special set of parameters to control the number of repeaters added, 

communication protocols and type of repeater modules to use for each connection depending on the sender and 

receiver designs. In order to facilitate timing convergence on paths across FTs, these can be created as serialized set 

of nodes between origin and destination for point-to-point connection, or as a tree of nodes for broadcasted signals. 

With such topology of nodes available, the structural design team is able to provide a specification file that instructs 

the transformation flow the amount and placement of repeater flops between nodes required to meet timing.  

Repeater insertion through transformation flows eliminates the need of feedback loops between SD and design 

teams, drastically reducing TAT of RTL generation for timing convergence activities. 

    Clock/Reset Re-distribution: Following hierarchy restructuring, clock and reset distribution requires expansion 

and re-alignment for the hardened floorplan. Each additional partition requires replicated clock or reset driver 

components as well as the associated local partition connectivity cleanup.  New design content is not required in this 

phase as architectural view RTL is replicated for each new instantiation. 

    Topology Restructuring: Transformations also include complex activities like topology restructuring. With the 

hierarchy restructuring complete, wholly new floorplan specific RTL is integrated, for example design for test (DFT) 

content. Furthermore, some floorplan-coupled fabric or topological design content is no longer valid.  As an 

example, topology dependent fabric requires expansion in terms of physical router additions and associated internal 

routing table updates. In this case, new high-level APIs are used to scrub the deprecated RTL from the design, and 

then instantiate, create, and connect the new or additional floorplan specific RTL collateral. 

    Fuse Isolation Insertion: Another beneficial use case of RTL transformation is adding logical isolation to fused 

outputs. We created high-level APIs that can consume a machine-readable spec that specifies the hierarchy/boundary 

that should be used to identify output ports, the hierarchies where the isolation modules should be inserted, what 

enable signal to use, and an exclusion list (outputs that should not be isolated). If the hierarchy to identify the output 

ports and the hierarchy to insert the isolation module are the same, it would imply a simple case where outputs of a 

single module are isolated. Figure 6 shows a spec and corresponding transformation. The automation takes care of 

identifying the output signals of Partition_1 that are also the output signals of SoC. These signals are then isolated 

by inserting an isolation module in Partition_1. Note that SoC-internal signals are not isolated. The excluded out0 

signal is also not isolated. Since the spec only lists Partition_1, isolation is only inserted for the outputs that originate 

from Partition_1. 

    Others: There are more transformations possible than the ones listed above, e.g., thermal diode insertion, 

parameterized logic reduction, validation collateral additions, port splitting etc. 
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Figure 6: Fuse Isolation Insertion – an example spec and corresponding transformation 



C. Validation 

    As RTL goes through multiple transformations, real errors and bugs can be unintentionally injected from 

tool/flow issues or from incorrect transformation specification.  A solid validation methodology is critical in 

detecting unexpected changes from these transformations early and prevent costly late detections.  Simulation based 

validation will provide the final transformation RTL signoff but requires validation expertise and has high 

turnaround time preventing quick feedback to transformation developers.  Formal Equivalence Verification (FEV) is 

the clear choice to validate that two designs are functionally equivalent with shorter runtime but is not effective if 

some of the transformations are not equivalent, such as topology restructuring and repeater insertion.  Such 

transformations can cause thousands of FEV failures making the debug impossible.  A validation approach using 

different FEV techniques and constraints to mask expected differences was developed to detect real transformation 

issues.   The use of FEV for RTL transformation validation instead of simulation provides a 5-10X runtime 

efficiency improvement in issue detection and debug resulting in major productivity gains throughout the 

transformation development cycle. The following sections describe the FEV challenges and techniques deployed to 

validate different types of transformations. 

    FEV Session Setup: The transformation FEV validation flow uses a simple RTL vs. RTL FEV session that 

accepts paths to the pre and post transformed RTL as well as a list of functional blocks which are not modified by 

the transformation flow.  FEV tool directive is applied to create stubbed views of those blocks such that the FEV 

session only models the functional block interfaces and their connectivity. 

    Validation for Feedthrough and Tie-off Insertion Transformations: Feedthrough insertion is a FEV compliant 

transformation that routes functional blocks through intermediate physical hierarchies by the automated creation of 

new feedthrough modules (FT_mod shown on Figure 5).  FEV session uses the full logic views of these newly 

created modules to model the feedthrough wires and ensure the original end-to-end connections between functional 

blocks are equivalent.  Similarly, FEV uses the full logic view of new tieoff modules added by the transformation 

flow to model and check tieoff values. 

    Validation for Repeater Transformations: Repeater transformation represents a simpler category of 

nonequivalent transforms.  The original functional block A to block B connectivity is broken with the insertion of 

repeater module by the transformation flow.  Unlike feedthroughs, repeater modules contain flops and would cause 

nonequivalence if the full logic RTL views are used in FEV.  But if stubbed views of repeater modules are used, 

FEV cannot “see” the original block A as the driver and will declare failure on block B, preventing detection of real 

transformation connectivity issues.  One method of addressing this expected failure scenario is by applying FEV 

virtual wire constraints on the stubbed repeater module’s input and output ports (Figure 7a).  With these constraints, 

FEV will pass if the repeater connectivity from block A to block B through the repeater module is correct and will 

fail if the connectivity is incorrect.  Another method of handling repeaters in FEV is to code the repeater block with 

assignment statements from outputs to inputs based on a special `ifdef compiler directive (Figure 7b).  Using this 

method, FEV reads the RTL view of the repeater module by applying the special directive and models the repeater 

block with assign feedthrough wires, allowing real connectivity issues to the repeater module to be detected. These 

techniques mask the repeaters from FEV; simulation will provide the final validation coverage for the repeater 

functionality. 

    Validation of Fused Isolation: This is a nonequivalent transformation involving insertion of logic isolation 

blocks on existing signals.  FEV reads in the full logic view of these newly added isolation blocks, creates a cut 

point on the isolation enable signal and applies a constraint value to disable the isolation logic to mask the expected 

failures.  This way, if the connectivity to the isolation blocks is incorrect, FEV would be able to detect the error. 

    Validation of Complex Hierarchy Restructuring: Hierarchy manipulation is one of the main transformations 

required to convert architectural RTL view to SD RTL.  It is generally a FEV compliant transformation but still 

poses challenges.  During this transformation, new SD hierarchies such as partitions (groups of functional blocks), 

macros (multiply instantiated hierarchies), and other physical hierarchies are created, and functional blocks are 

moved from the original architectural hierarchies into newly created SD hierarchies.  FEV relies heavily on the 

ability to map compare objects by name.  In the context of RTL transformation FEV, it expects the instance paths to 

the stubbed functional blocks to be the same.  But these hierarchy movements change the hierarchical instance paths 

drastically, causing FEV tool to rely on functional mapping based on structural similarities instead.   This is a much 

more compute intensive process which can take several hours on large designs and is prone to incorrect mapping, 

causing FEV to be ineffective as a fast bug detection tool. To improve FEV mapping accuracy and reduce FEV 

mapping time from hours to minutes, the hierarchy transformation flow can generate a FEV guidance file with 

mapping constraints between the pre and post transform hierarchical instance names of the functional blocks, as 

shown in Figure 8. 



 
 

 

 

 

 

 

    Validation of Clock and Reset Distribution Transformations: This transformation involves changing the 

number of instances driving clocks and resets between architectural view and SD RTL view.  For example, in 

architectural design, two functionally equivalent clock/reset distribution blocks C1..C2 can service 20 functional 

blocks.  In structural design, four functionally equivalent clock/reset blocks C1..C4 can service the same 20 

functional blocks, depending on physical design needs.  This is a category of equivalent transformation but requires 

special FEV constraints to convey logic block replication.  FEV tools have support for many-to-many mapping 

between two designs allowing user to specify that C1..C2 on the pre transformed design are equivalent to C1..C4 on 

the post transformed design.  FEV tool would then use this assumption constraint for verifying all the downstream 

client blocks as well as verifying that the replicated clock/reset blocks themselves are equivalent. 

    Validation of Complex Topology Restructuring:  Topology restructuring transformations, such as changing 

fabric router’s architectural view by adding more routers and changing their client connections, represent a very 

challenging category of nonequivalent transformations requiring more complex handling in FEV.  Figure 9 shows an 

example of pre and post transformed router topology; the purple/yellow/green router instances are mapped together 

in FEV, as are other functional blocks of the same name, and the red circles indicate blocks which fail FEV, even if 

the topology changes and interconnects are transformed properly as intended.  Multiple options were considered to 

handle this transformation in FEV, including ignoring the failures or attempting to model the router modules as wire 

feedthroughs.  Ultimately, an approach was developed to provide as much FEV coverage as possible based on the 

transformation developer’s intent.  The blocks with failures are driven by different routers and FEV cut points are 

applied to the output ports of those driver routers, then mapped together to allow FEV to model them as if they are 

assumed to be equivalent drivers.  With this approach, the FEV constraints act as a comparison spec so that FEV 

will pass if the transformation flow correctly connects the intended topology and will fail if the connections are not 

correct. 

    Improving Transformation FEV Efficiency with Custom Constraint Procedures: Transformation FEV 

requires application of many constraints to do special modeling or mask expected failures, create cut points and 

mappings, model feedthroughs, create replication equivalences, all of which would be tedious to manually apply and 

maintain.  To simplify the FEV constraint process, a library of custom constraint procedures was developed using 

FEV tool API to identify modules, instances, pins and fanouts so that frequently used constraints could be applied 

easily by the end-user with single line procedure calls. 

     

  

 

 
         Figure 7a: FEV constraint to model repeater as feedthrough            Figure 7b: Verilog `ifdef to model repeater as feedthrough for FEV 
 

 

FEV mapping: 
FEV_map arch1/unit1 sec1/par1/unit1 
FEV_map arch1/unit2 sec1/par2/unit2 
FEV_map arch2/unit3 sec1/par2/unit3 
FEV_map arch2/unit4 sec1/par1/unit4 
 

Figure 8: Hierarchy transformations and associated FEV mappings 

 
 

Figure 9: Topology differences before and after transformation causing FEV failures 



    The FEV validation methodology was able to detect several issues in the transformed RTL such as input pins tied 

off to incorrect values, incorrect clock/reset signals, missing or incorrect connectivity as well as unexpected 

topology changes.  These issues could be detected in FEV 5-10X faster compared to simulation.  Debug of 

connectivity issues using FEV is also 10X+ simpler and faster and does not require validation expertise compared to 

simulation.  FEV tool can pinpoint failures directly on the input pins of the stubbed functional blocks so that 

transformation developers could easily root cause the issue by tracing the driver nets.  Although FEV validation 

methodology cannot fully cover all nonequivalent transformations, it provides fast coverage of a large percentage of 

transformation bugs and increases confidence in the use of automated RTL transformations.  

 

III.   RESULTS 

The RTL transformation methods described in this paper were deployed for production use in the development of 

the latest two generations of Visual Computing segment products of our company. These designs are the main 

components of some of the industry leading graphics products. Table 1 summarizes the TAT improvement we 

observed following the deployment of these methods. For most of the activities, the TAT reduction was generally 

over 10x. There was also corresponding reduction in NRE cost, which are not reported here.  

As with any new technology, there is a cost to ramping a new tool and methodology, including developing in-

house APIs. This cost is expected to be amortized over multiple projects, hence not reported here. 

 

IV.   CONCLUSION AND FUTURE WORK 

RTL transformation methods described in this paper resulted in a paradigm shift in the entire design process, 

resulting in order of magnitude TAT improvements. We believe that the EDA industry is at a point where these 

methods can be scaled to many designs to yield similar improvements. In terms of future work, one of the major 

remaining challenges is handling latch-on content, collaterals that accompany RTL and a need to remain up to date 

as the RTL changes and matures, e.g., UPF. Consuming RTL content from various sources and generating add-ons 

to RTL (e.g., post-processing needed to add any ifdef statement in RTL) is also a challenge that sometimes require 

ad hoc efforts on the users’ part. We plan to work with the EDA industry to resolve these issues and scale RTL 

transformation methods further. 
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Table 1: Examples of TAT reduction due to automated RTL transformation in a production VLSI design 
 

RTL Transformation TAT Reduction 

Hierarchy Restructuring 4-6 Weeks 

Feedthrough and Tie-off Insertion 5-7 Weeks 

Fuse Isolation Insertion 2-3 Weeks 

 

 


