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How LLMs will improve FV workflow?
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Benchmarking LLM Capabilities 

• Performance Evaluation: 
• Assessing how well the LLM performs on specific tasks, such as NL understanding, generation 

of SVAs, code analysis and summarization, and more.

• Comparative Analysis: 
• Comparing different LLMs or different versions of the same model to identify which one 

performs better under certain conditions or tasks.

• Accuracy and Correctness: 
• Generates syntactically correct and semantically meaningful code.

• Code Quality: 
• Measuring code readability, maintainability, and efficiency.

• Task Completion: 
• Writing assertions, setup config, and full FV testbench, given specific requirements or 

prompts.



Related Case Study: Domain-Adapted LLMs for VLSI 
Design and Verification 

ChipNeMo evaluation results on EDA-specific benchmark, 
compared against other LLMs.

The training flow for ChipNeMo DAPT and model 
alignment, including SFT

Domain-specific pre-training dataset (DAPT):
• Collection of proprietary hardware-related code (RTL, verification testbenches, etc)
• Natural Language (NL) datasets: hardware specifications, documentation, etc



FVEval – LLM Benchmark for FV Tasks

Datasets:

• Three benchmarking tasks: 

• NL2SVA-Human

• NL2SVA-Machine

• Design2SVA

Evaluation Flow

• Integrates FV tools for end-to-end automatic evaluation

• Holistic evaluation of LLM’s generated assertion using property equivalence checking 



Evaluating LLM’s Capabilities for FV code
Flow Diagram of the FVEval Workflow
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NL2SVA-Machine (Direct Low-Level NL -> SVA Assertion)

Model 
Name

0-shot 2-shot

Syntax 
Pass@1

BLEU
Syntax 

Pass@1
BLEU

Mixtral-8x7B 0.152 0.189 0.747 0.283

LLaMA2-70B 0.245 0.283 0.808 0.283

gpt-3.5-turbo 0.320 0.359 0.919 0.444

gpt-4 0.521 0.875 0.960 0.465

ChipNemo70B
(DAPT+DSFT)

0.425 0.864 0.980 0.495

Metrics:
• Syntax correctness
• Functional correctness:
• BLEU score: n-gram similarity 

between ground-truth solution vs. LM 
solution
• Proxy Measure for functional 

similarity



NL2SVA-Human results (Testbench + High-Level NL to SVA Assertions)

Model 
Name

0-shot 3-shot

Syntax 
Pass@1

Signal 
Match

BLEU
Syntax 

Pass@1
Signal 
Match

BLEU

Mixtral-8x7B 0.626 0.0 0.286 0.808 0.162 0.421

LLaMA2-70B 0.556 0.0 0.331 0.707 0.091 0.457

gpt-3.5-turbo 0.354 0.0 0.254 0.889 0.313 0.524

gpt-4 0.980 0.0 0.329 0.990 0.323 0.526

ChipNemo70B
(DAPT+DSFT)

0.828 0.0 0.348 1.0 0.333 0.516

Metrics:
• Syntax correctness
• Functional correctness:
• Signal Match
• BLEU score



Key Takeaways

• Lack of Domain-Specific Context Awareness

• Limited Understanding of Temporal Logic

• Overlooking Corner Cases

• Quality Gap: LLM vs. Human Assertions

Given the limitations of LLMs, where should formal verification teams 
prioritize deploying LLMs to augment their workflows effectively?
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LLM based VIP Instantiation Challenges

•LLM cannot read the entire file at once, so it will never get the full context of the 
code

•Divide full code file into smaller partitions to iteratively feed to LLM so it effectively 
instantiates VIPs for entire files 

•Developed algorithm to chunk code cleverly to preserve code syntax and structure in 
chunking

•General models lack knowledge of the target internal VIPs 

•Module parameters are buried in different files, resulting in unknown signals 
•Automatic data retrieval process to fix LLM responses in post-processing
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LLM based VIP Instantiation Challenges

Approach: Design a Scalable, Modularized, Fully Automated Flow

Data Pre-processing LLM VIP InstantiationPrompt Augmentation LLM Output Post-Processing



RAG Based Chatbots

RAG (Retrieval Augmented Generation) aka "Prompt LLM with Context about Expert Documents"

• Avoids having to Train/Fine-Tune LLM

• Avoids Hallucinations – As keeps the LLM grounded to Truth in the presented Context
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VIP Instantiation Flow Results
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Key Takeaways

• Superior Performance of RAG: Retrieval-Augmented Generation (RAG) achieved the highest accuracy in VIP 
instantiation, outperforming Baseline and In-Context Learning (ICL).

• 100% Accuracy for FIFO VIPs: RAG correctly instantiated all FIFO VIPs (7/7 correct instances).

• High Accuracy for Arbiter VIPs: RAG successfully instantiated 11 out of 12 arbiter VIPs, with only one incorrect result.

• Baseline Model Ineffectiveness: The baseline approach (without augmentation) failed to instantiate any VIPs 
correctly.

• ICL Shows Moderate Improvement: ICL improved performance over the baseline but was inconsistent, especially for 
arbiter VIPs (1 correct, 4 incorrect, 7 missing).

• Llama-3-70b Outperforms Finetuned Model: The Llama-3-70b model with RAG significantly outperformed the fine-
tuned chipmixtral_8x7b_chat_tp4_trt_h100 model.

• Reduced Hallucinations: The RAG approach minimized incorrect instantiations compared to other methods.
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• Automated VIP Instantiation: LLMs streamline and automate the integration of Verification IPs (VIPs), 
reducing manual effort.

• Retrieval-Augmented Generation (RAG): Achieves superior accuracy in VIP instantiation compared to 
baseline and In-Context Learning (ICL).

• Efficiency Gains: Significant reduction in verification time by automating common VIP deployments.

• Scalability: Modular framework adaptable for various VIPs without additional model fine-tuning.

• Improved Verification Coverage: More reliable VIP instantiations reduce missed bugs and enhance 
verification integrity.

• Optimized Prompt Engineering: Data pre-processing pipeline ensures efficient LLM usage and minimal 
hallucinations.

• Performance Validation: RAG-based approach outperformed other methods in accuracy and reliability.

Conclusion 
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Next Steps 

How to Enhance Existing Flow?
• Add more Data to the RAG VD
• Upgrade driving LLM (currently Llama3-70b or DeepSeek)
• Additional support for more VIPs (forward progress VIPs)
• Deploy to VIP instantiation flow to more projects

FV Eval 
Creation

Develop LLMs Code Gen Flows
(VIP Instantiation)

Test Flow

Benchmark LLMs on 
FV Eval

Deploy 
Applications

Enhance FlowReady? Not Ready?



Questions
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