
Towards Automated Verification IP Instantiation via
LLMs

Ghaith Bany Hamad, Michael Marcotte, Syed
Suhaib

Nvidia

How LLMs will improve FV workflow?

Design IAS,
FD,

Standard,…

RTL
Design

Q&A
instruction

Design Details

Code
generation
Examples,

VIP..

Analysis
Results,

Logs

Q&A
instruction

Formal Verification Data

TestPlan
Creation

FV Hunting

Code
Generation

Q&A Copilot

General

LLM Model

Benchmarking LLM Capabilities

• Performance Evaluation:
• Assessing how well the LLM performs on specific tasks, such as NL understanding, generation

of SVAs, code analysis and summarization, and more.

• Comparative Analysis:
• Comparing different LLMs or different versions of the same model to identify which one

performs better under certain conditions or tasks.

• Accuracy and Correctness:
• Generates syntactically correct and semantically meaningful code.

• Code Quality:
• Measuring code readability, maintainability, and efficiency.

• Task Completion:
• Writing assertions, setup config, and full FV testbench, given specific requirements or

prompts.

Related Case Study: Domain-Adapted LLMs for VLSI
Design and Verification

ChipNeMo evaluation results on EDA-specific benchmark,
compared against other LLMs.

The training flow for ChipNeMo DAPT and model
alignment, including SFT

Domain-specific pre-training dataset (DAPT):
• Collection of proprietary hardware-related code (RTL, verification testbenches, etc)
• Natural Language (NL) datasets: hardware specifications, documentation, etc

FVEval – LLM Benchmark for FV Tasks

Datasets:

• Three benchmarking tasks:

• NL2SVA-Human

• NL2SVA-Machine

• Design2SVA

Evaluation Flow

• Integrates FV tools for end-to-end automatic evaluation

• Holistic evaluation of LLM’s generated assertion using property equivalence checking

Evaluating LLM’s Capabilities for FV code
Flow Diagram of the FVEval Workflow

NL2SVA-Human

Dataset Generation

Data Preprocessing
Package input data for each subtask

Collection of
Human-Generated

Data

Synthetic
Data Generator

NL2SVA-Human

LLM Inference Launcher

LLM Inference
w/ ICL & CoT

class BenchmarkLauncher(object)

parse_code_response(lm_response_str: str)
package_testbench(row: InputData, lm_response: str)

save_results(self,

model_name: str, results: list[LMResult])

generate_system_prompt()

generate_user_prompt()

get_cot_strategy()

Process & Save
Response

Configure
Experiment

NL2SVA-Human

Auto-Evaluation

JasperGold
-batch

class Evaluator(object)

evaluate_text_similiar
ty(result_list:
list[LMResult])

set_tcl_file_path()

write_design_sv()

write_testbench_sv()

Process & Save Results
Parse JG output string

Save as .csv file

HF
Evaluate

evaluate_jg
(result_list:
list[LMResult],

with_rtl_design: bool)

Launch Eval Backend

Retrieve {task}.tcl

Generat
e .sv

for JG

launch

NL2SVA-Machine (Direct Low-Level NL -> SVA Assertion)

Model
Name

0-shot 2-shot

Syntax
Pass@1

BLEU
Syntax

Pass@1
BLEU

Mixtral-8x7B 0.152 0.189 0.747 0.283

LLaMA2-70B 0.245 0.283 0.808 0.283

gpt-3.5-turbo 0.320 0.359 0.919 0.444

gpt-4 0.521 0.875 0.960 0.465

ChipNemo70B
(DAPT+DSFT)

0.425 0.864 0.980 0.495

Metrics:
• Syntax correctness
• Functional correctness:
• BLEU score: n-gram similarity

between ground-truth solution vs. LM
solution
• Proxy Measure for functional

similarity

NL2SVA-Human results (Testbench + High-Level NL to SVA Assertions)

Model
Name

0-shot 3-shot

Syntax
Pass@1

Signal
Match

BLEU
Syntax

Pass@1
Signal
Match

BLEU

Mixtral-8x7B 0.626 0.0 0.286 0.808 0.162 0.421

LLaMA2-70B 0.556 0.0 0.331 0.707 0.091 0.457

gpt-3.5-turbo 0.354 0.0 0.254 0.889 0.313 0.524

gpt-4 0.980 0.0 0.329 0.990 0.323 0.526

ChipNemo70B
(DAPT+DSFT)

0.828 0.0 0.348 1.0 0.333 0.516

Metrics:
• Syntax correctness
• Functional correctness:
• Signal Match
• BLEU score

Key Takeaways

• Lack of Domain-Specific Context Awareness

• Limited Understanding of Temporal Logic

• Overlooking Corner Cases

• Quality Gap: LLM vs. Human Assertions

Given the limitations of LLMs, where should formal verification teams
prioritize deploying LLMs to augment their workflows effectively?

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

LLM based VIP Instantiation Challenges

•LLM cannot read the entire file at once, so it will never get the full context of the
code

•Divide full code file into smaller partitions to iteratively feed to LLM so it effectively
instantiates VIPs for entire files

•Developed algorithm to chunk code cleverly to preserve code syntax and structure in
chunking

•General models lack knowledge of the target internal VIPs

•Module parameters are buried in different files, resulting in unknown signals
•Automatic data retrieval process to fix LLM responses in post-processing

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

LLM based VIP Instantiation Challenges

Approach: Design a Scalable, Modularized, Fully Automated Flow

Data Pre-processing LLM VIP InstantiationPrompt Augmentation LLM Output Post-Processing

RAG Based Chatbots

RAG (Retrieval Augmented Generation) aka "Prompt LLM with Context about Expert Documents"

• Avoids having to Train/Fine-Tune LLM

• Avoids Hallucinations – As keeps the LLM grounded to Truth in the presented Context

Raw Data

Data Processing

Generate LLM
Prompts for Each VIP

Response
Processing

In-Context Learning

Keep
Prompt As is

(Baseline)

Stage 1: Data Pre-processing

Run LLM
Analysis

Code Blocks

Prompts +
Code Blocks

Prompt For FIFO VIP

Prompts +
Code Blocks

Prompt For Arbiter VIP

Stage 2: Prompt Augmentation

RAG System
Option 2

Examples of
Each VIP

Option 3Option 1

Prompts +
Code Blocks

Stage 3: LLM VIP Instantiation

Retrieved
details /

examples

VIP Instantiation For FIFO VIP

Run LLM
Analysis

Prompts +
Code Blocks

Retrieved
details /

examples

VIP Instantiation For Arbiter VIP

VectorD
B

Confluenc

e

Pages

VIP use

example

Analyze
Results

im
p

ro
ve

 P
ro

m
p

t
a

u
g

m
e

n
ta

ti
o

n

Stage 4: LLM Output Post-Processing

Responses for
nv_assert_vip_fifo

instantiation

Responses for
nv_assert_vip_arbiter

instantiation

Full List of all VIP
Instantiation

List of VIP
Instantiation that

needs review

Proposed Flow VIP Instantiation

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

VIP Instantiation Flow Results

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Key Takeaways

• Superior Performance of RAG: Retrieval-Augmented Generation (RAG) achieved the highest accuracy in VIP
instantiation, outperforming Baseline and In-Context Learning (ICL).

• 100% Accuracy for FIFO VIPs: RAG correctly instantiated all FIFO VIPs (7/7 correct instances).

• High Accuracy for Arbiter VIPs: RAG successfully instantiated 11 out of 12 arbiter VIPs, with only one incorrect result.

• Baseline Model Ineffectiveness: The baseline approach (without augmentation) failed to instantiate any VIPs
correctly.

• ICL Shows Moderate Improvement: ICL improved performance over the baseline but was inconsistent, especially for
arbiter VIPs (1 correct, 4 incorrect, 7 missing).

• Llama-3-70b Outperforms Finetuned Model: The Llama-3-70b model with RAG significantly outperformed the fine-
tuned chipmixtral_8x7b_chat_tp4_trt_h100 model.

• Reduced Hallucinations: The RAG approach minimized incorrect instantiations compared to other methods.

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

• Automated VIP Instantiation: LLMs streamline and automate the integration of Verification IPs (VIPs),
reducing manual effort.

• Retrieval-Augmented Generation (RAG): Achieves superior accuracy in VIP instantiation compared to
baseline and In-Context Learning (ICL).

• Efficiency Gains: Significant reduction in verification time by automating common VIP deployments.

• Scalability: Modular framework adaptable for various VIPs without additional model fine-tuning.

• Improved Verification Coverage: More reliable VIP instantiations reduce missed bugs and enhance
verification integrity.

• Optimized Prompt Engineering: Data pre-processing pipeline ensures efficient LLM usage and minimal
hallucinations.

• Performance Validation: RAG-based approach outperformed other methods in accuracy and reliability.

Conclusion

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Next Steps

How to Enhance Existing Flow?
• Add more Data to the RAG VD
• Upgrade driving LLM (currently Llama3-70b or DeepSeek)
• Additional support for more VIPs (forward progress VIPs)
• Deploy to VIP instantiation flow to more projects

FV Eval
Creation

Develop LLMs Code Gen Flows
(VIP Instantiation)

Test Flow

Benchmark LLMs on
FV Eval

Deploy
Applications

Enhance FlowReady? Not Ready?

Questions

	Slide 1: Towards Automated Verification IP Instantiation via LLMs
	Slide 2: How LLMs will improve FV workflow?
	Slide 3: Benchmarking LLM Capabilities
	Slide 4: Related Case Study: Domain-Adapted LLMs for VLSI Design and Verification
	Slide 5: FVEval – LLM Benchmark for FV Tasks
	Slide 6: Evaluating LLM’s Capabilities for FV code
	Slide 7: NL2SVA-Machine (Direct Low-Level NL -> SVA Assertion)
	Slide 8: NL2SVA-Human results (Testbench + High-Level NL to SVA Assertions)
	Slide 9: Key Takeaways
	Slide 10: LLM based VIP Instantiation Challenges
	Slide 11: LLM based VIP Instantiation Challenges
	Slide 12: RAG Based Chatbots
	Slide 13
	Slide 14: VIP Instantiation Flow Results
	Slide 15: Key Takeaways
	Slide 16: Conclusion
	Slide 17: Next Steps
	Slide 18: Questions

