Towards Automated Verification IP Instantiation via LLLMs

Ghaith Bany Hamad, Michael Marcotte, Syed Suhaib
Nvidia Corp., Santa Clara, USA

Abstract—Recent advancements in large language models (LLMs) have opened new possibilities for automation in
hardware verification, including tasks such as generating formal assertions from natural language specifications and reg-
ister-transfer level (RTL) implementations. However, despite these promising developments, current LLLM-generated as-
sertions often fall short of human-level quality, limiting their practical use in formal verification (FV) workflows. On the
other hand, Verification IPs (VIPs) are comprehensive, incorporating a complete set of checkers that systematically vali-
date different aspects of the design under test. However, deploying VIPs has traditionally been challenging for designers
due to limited understanding and time constraints, which can lead to delays and increase the risk of missed bugs. To ad-
dress these issues, our work introduces LLMs as both assistants and agents for automating VIP instantiation, specifically
designed to aid verification engineers. Our solution overcomes existing VIP deployment challenges by streamlining and
automating the integration process, providing detailed guidance on VIP usage, and optimizing resource allocation—key
advantages for meeting tight project timelines. Our results demonstrate that Retrieval-Augmented Generation (RAG)
enables robust interpretation of Verilog RTL, producing syntactically and logically sound VIP instantiations essential for
maintaining verification integrity.

I INTRODUCTION

Formal verification accounts for, on average, 56% of time spent on ASIC design and plays a critical role in the de-
sign process in verifying the correctness of chip design [1], [13]. While FV provides notable benefits, such as catch-
ing elusive bugs that may be missed with simulation-based methods, it also has limitations: FV workflows demand
significant engineering effort to develop formal testbenches manually and supporting collateral, a task handled by
skilled experts. This requirement makes it challenging to scale FV adoption and expand its coverage across a larger
number of subsystems.

Recent advancements in large language models (LLMs) [2], [3], [4], [5], [6] have led researchers to explore their
potential for automating and enhancing productivity in hardware verification [7], [8], [9], [10]. Specifically, recent
studies have examined the use of LLMs for tasks in formal verification, such as generating formal assertions from
natural language (NL) specifications [11] and from the register-transfer level (RTL) descriptions of the design-un-
der-test (DUT) [12]. The rationale behind this exploration is clear: the inputs handled by human FV engineers—such
as design RTL and specifications—and the outputs they generate (FV testbench implementations) are all inherently
represented as text and code, which aligns well with LLMs’ strengths in reasoning and content generation [14], [15],
[16]. Although prior work has demonstrated that LLMs can indeed generate hardware assertions, the quality of these
assertions remains limited and falls short of human-level expectations. Due to this limitation, using LLMs for such
tasks is not yet viable for formal verification teams.

Many verification teams have developed Verification IPs (VIPs) by packaging the most frequently used verification
checkers to facilitate reuse across projects and enable deployment by engineers who are not verification experts.
VIPs enhance productivity by enabling engineers to verify design compliance with various protocols and standards
effectively. However, the deployment of VIPs has been fraught with challenges, such as tight project schedules or a
lack of expertise regarding the optimal use of each VIP. A more effective solution of automating common VIP in-
stantiations by exploiting patterns of common modules has immense potential in ensuring thorough coverage and
rapid development for new projects, greatly accelerating the verification process and chip production. Our main
novel contributions to this work are:

- Data Processing Pipeline for Large Verilog Code Files:
A novel data processing pipeline is proposed to manage large-scale Verilog code files effectively, facilitat-
ing the creation of optimized prompts for LLMs. The pipeline begins with cleaning RTL SystemVerilog
code to remove unnecessary elements, followed by segmenting the code into manageable chunks. A key
innovation in this pipeline is a method to process these chunks in a manner that minimizes LLM agent
calls, thereby optimizing runtime performance. Additionally, a multi-threading approach is integrated into
the pipeline to handle large RTL files with numerous VIP instantiations efficiently. This ensures that the
system can scale to meet the demands of complex verification tasks involving substantial codebases.

- LLM-Based Automation of VIP Instantiation:
An LLM-based flow is developed to automate the instantiation of various Verification IPs (VIPs), stream-
lining the verification process. Within this flow, multiple augmentation methods were explored to optimize
LLM performance.

o In-Context Learning (ICL): This method enhances LLM responses by including demonstrations
within the prompt, enabling the model to infer mechanisms and generalize them to new queries.
While effective in improving accuracy, ICL requires extensive prompt engineering and becomes
rigid and unscalable when applied to diverse VIPs.

o Retrieval-Augmented Generation (RAG): To address ICL's limitations, a RAG-based approach is
introduced. RAG consists of two key steps: first, constructing a vectorized database of knowledge
chunks derived from prior VIP examples; second, employing a retrieval function to extract the
most relevant knowledge based on the user query. These retrieved chunks are appended to the
LLM prompt, embedding specialized knowledge into the response without requiring additional
model training. This flexible and cost-effective method enhances the adaptability of the LLM for
various verification contexts.

- Post-Response Data Correction and Hallucination Detection:
A post-response data correction pipeline is designed to ensure the reliability and precision of the LLM-
generated outputs. This pipeline identifies and corrects inconsistencies in the generated content, mitigating
the risk of errors in VIP instantiation. Furthermore, a hallucination detection mechanism is implemented to
identify and flag instances where the LLM generates content that deviates from the expected or factual ba-
sis. Together, these components enhance the overall robustness and accuracy of the automated verification
flow.

II. PRELIMINARIES

A. Formal Hardware Verification

Hardware verification is a critical phase in the chip design process, essential for ensuring that the final product per-
forms according to its specifications. Despite the increasing allocation of resources to verification compared to hard-
ware design, recent industry data indicates a growing number of projects where critical bugs evade detection during
verification, requiring costly re-spins to address them [19].

Two primary approaches to hardware verification are widely recognized: traditional simulation-based verification
and formal verification (FV), which has gained considerable traction over the past decade. Unlike simulation-based
methods, FV seeks to rigorously prove that a digital circuit’s design adheres to a specified set of requirements [20].
In FV, the specification is defined by a set of properties constraining the search space (assumptions) or identifying
the design’s expected behavior (assertions). Digital circuits are well-suited to representation as state transition sys-
tems, while the properties are expressed in temporal logic [21], [22]. This setup enables model checkers to traverse
the state transition graph, searching for any states that violate these properties [23]. When a model checker identifies
such a state, it provides a counterexample, or trace, that shows where the property fails. In contrast, simulation-
based verification tests properties only for a subset of states based on specific input stimuli. If a model checker can
demonstrate that a property holds across all states, it effectively provides formal proof that the property is univer-
sally valid for the design.

B. Retrieval Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG), shown in Fig. 1, is a cutting-edge and computationally efficient method
that enhances an LLM’s responses by drawing from a specialized vector database of external knowledge. To set up
RAG, a vector database must first be created, storing a knowledge corpus as semantic vectors. This corpus can con-
sist of various document types, such as webpages, PDFs, and text files. To accommodate storage requirements, each
document is broken into smaller, manageable chunks that adhere to a token limit. Building this vector database is a
one-time process, although it can be refreshed as new documents are added or existing ones are updated.

Once the vector database is prepared, the RAG system is ready for querying. When a user poses a question to the
RAG system, it first converts the query into a semantic vector. RAG then retrieves the top-k chunks from the vector
database that are most relevant to the user query. At a high level, this process is performed by calculating a similar-
ity index between the query and each of the chunks that come from the specialized RAG database. These selected
chunks are appended to the user’s query, which is then passed to the LLM for response generation. Consequently,
the LLM’s answer is enriched with precise information from the RAG vector database, producing responses that are
both accurate and contextually informed.

Question Retrieval Augment Question Generation Explicit resource -
informed answer

B Pass to LLM —
Q) Q)+ B B = o S
=i \.e‘a

FV Knowledge
Vector
Database

Fig. 1- General Flow for Retrieval Augmented Generation (RAG) System.

I11. MOTIVATION AND PRIOR WORK

In this paper, we introduce a novel application of large language models (LLMs) as agents for the automatic instanti-
ation of verification intellectual properties (VIPs), a topic that remains unexplored in formal verification research.
Prior work has evaluated LLMs for tasks such as SystemVerilog Assertion (SVA) code generation [12], [17] and
assertion generation with AssertLLM [1], both demonstrating promising results in generating functional, high-qual-
ity code. However, in practical settings, VIPs serve as effective checkers to verify repeated RTL (Register Transfer
Level) modules, containing numerous assertions that are crucial to validating module correctness. The potential ben-
efits of automating VIP instantiation across different designs are substantial, motivating us to explore an agent-based
approach in which an LLM is trained specifically as an expert for VIP instantiations. This approach aligns with a
growing trend of optimizing LLMs for specialized domains to enhance accuracy and reduce hallucinations, focusing
their capabilities within narrowly defined areas [18].

Using a generic, out-of-the-box LLM, such as a GPT model or Meta’s Llama2/3, is inadequate for our objectives;
nor do internal LLMs currently have the necessary proficiency for targeted VIP instantiation. This limitation stems
from the absence of VIP-related data in the models’ pre-training datasets. In other words, foundational LLMs lack
the specific knowledge needed to understand and instantiate VIPs accurately. While fine-tuning LLMs to integrate
formal verification (FV) knowledge related to VIPs could address this gap, generating new datasets and fine-tuning
models is both time-intensive—often taking weeks—and computationally costly. Thus, fine-tuning becomes an im-
practical solution for scalable VIP instantiation, highlighting the need for approaches that are efficient, cost-effec-
tive, and scalable to future iterations of the automatic VIP instantiation project.

A significant challenge remains without fine-tuning: the LLM lacks any inherent knowledge of our specialized for-
mal verification (FV) VIP instantiation task. One possible approach is to include all necessary information for VIP
instantiation directly in the query; however, LLMs have a limited token context window. For instance, Llama2 has a
context window of 2048 tokens, meaning the combined length of the prompt and the response must not exceed this
limit, or else the response is truncated, leading to incomplete or inaccurate VIP instantiations. This constraint pre-
sents a bottleneck when working with large files, as we must carefully manage the information passed to the LLM to
avoid wasting valuable tokens on irrelevant details. To maximize the effectiveness of the LLM within these limita-
tions, it is essential to ensure that only the most pertinent information is provided, specifically tailored to the VIP
type being instantiated. Developing a strategy to handle large files efficiently allows us to streamline VIP instantia-
tion by including only the necessary context, thus avoiding truncation issues and ensuring that the LLM's token win-
dow is utilized optimally. This approach is critical for accurately instantiating VIPs across different designs while
maintaining efficiency and effectiveness within the constraints of the LLM’s token limit.

Existing research offers two promising methods for equipping LLMs with the relevant information needed to effec-
tively address challenges like those discussed here, especially the limited context window. These methods, known
collectively as prompt augmentation, include in-context learning (ICL) [24] and retrieval-augmented generation
(RAGQG). Rather than re-training an LLM, both methods build upon an out-of-the-box model, enabling a quicker im-
plementation and alignment of the LLM agent with our domain-specific needs. Furthermore, as outlined in the pre-

vious section, RAG facilitates straightforward database creation and eliminates the need for prompt structure modifi-
cations; adding information to the vector database is sufficient to introduce new, specialized VIP knowledge to the
LLM.

IV. LLMS AS ASSISTANTS AND AGENTS

Our work introduces LLMs as agents driving the instantiation of VIPs for verification engineers. Our proposal out-
lines a procedure to take state-of-the-art foundational LLMs and apply them to focused and technical domains to
accomplish tasks with performance far exceeding those of the base LLMs. Through retrieval augmented generation
(RAG), we have successfully deployed a special Q&A bot for design and verification engineers that augments its
natural language reasoning with the domain expertise from VIP documentation (details in Fig. 2). However, the fo-
cus of this proposal is on VIP instantiation where we present our modularized, scalable pipeline that allows for the
instantiation of VIPs. We demonstrate in our experiments that RAG provides a more robust understanding of Veri-
log code compared to our baselines, creating far fewer hallucinations and exceedingly accurate and precise results
necessary for the proper generation of VIP instantiations to be deployed in the formal verification pipeline.

Here are some example questions, but you can ask your own:
e Give me a list of all VIPs available to use.

What is the VIP for the credit-valid interface?

What is the VIP for Gray Code?

How to use valid-credit VIP?

Instantiate the valid-credit VIP for scc2csn_req_valid, scc2csn_req_credit
interface?

e What s the VIP for safety?

Fig. 2- Deployed Q&A ChatBot based on the RAG to help answer engineers’ queries on VIPs.

V. METHODS

The proposed VIP instantiation flow is divided into four main steps: Data Pre-processing, Prompt Augmentation, VIP In-
stantiation, and LLM Output Post-Processing, as shown in Fig. 3. In the following section, the details of each stage will be
explained.

A. RTL code pre-processing pipeline

The first data pre-processing stage involves two main tasks: filtering the raw RTL design files and then partitioning
code into sizable blocks for the prompts to the LLM. For the first step of cleaning the RTL design files, we have a
deterministic algorithm containing procedures to filter out unnecessary artifacts from the code that are irrelevant to
VIP instantiation. These artifacts include comments, ‘ifdef” and ‘ifndef” declarations, input/output port declarations
with the keywords ‘defines’ and ‘includes’, and blank lines resulting from deleting these details in the code files.
Following filtering these details, we are ready to process the cleaned code file into prompts. The second step, which
is the partitioning of code blocks, is performed using our novel algorithm to ensure optimal chunking by maintaining
the integrity of blocks of code while respecting the LLM token limit. This step is crucial to formulate raw data into
reasonable prompts so we can leverage LLMs in our flow with minimal hallucinations. To do so, we use our propri-
etary algorithm that recursively splits cleaned Verilog code into partitions that obey a maximum token count we
must respect to query the target LLMs accurately. This step aims to ensure each query to the LLM contains a parti-
tion of the cleaned code file that is syntactically complete so we can process each section independently through the
LLM and instantiate relevant VIPs using the cleaned information. We have verified that our data pre-processing
techniques work reliably for our instantiation of FIFO and arbiter VIPs and designed our algorithms to cover cases
for these modules. However, our data-preprocessing pipeline, along with the rest of our flow, was designed to scale
the implementation to any number of VIPs, which we have done by adding to the list of rules we want to be fol-
lowed in the driver functions of our cleaning and prompt creating processes. The execution of these steps results in
cleaned prompts of partitioned code that we can iteratively feed to our LLMs to instantiate our VIPs. The code par-
titions have no overlap and collectively span the entire cleaned code file.

B. Prompt Augmentation

The second stage of our VIP instantiation flow is the prompt augmentation stage which we vary in method depend-
ing on the experiments we conducted to determine the efficacy of Retrieval Augmented Generation (RAG) in instan-
tiating VIPs compared to our baseline and In-Context Learning (ICL) methods of prompt augmentation. We set up
our RAG’s vectorized database to contain internal documents on VIP instantiation and examples of module code
and VIP instantiation pairs demonstrating examples of proper VIP instantiation. Each experiment involves the LLM
being iteratively fed each base prompt created from the data pre-processing stage. For baseline augmentation, we
feed just the code partitions without further augmentation to evaluate VIP instantiation through an LLM as a control.
For the ICL and RAG experiments, we developed a distinct series of rules formal verification experts would use to
help instantiate VIPs for FIFOs and arbiters. If a FIFO is detected inside the code partition, our flow will append the
FIFO ruleset. If an arbiter is detected, the arbiter ruleset will be appended to guide the LLM accordingly for these
different modules. These rulesets remained the same between the ICL and RAG experiments and were appended
after each code partition to augment the response. The ICL method prompts were also given a one-shot example of
a VIP instantiation for the respective module, while the RAG method used RAG to augment the prompt with rele-
vant chunks from the vectorized database of internal documents on formal verification. After the steps in prompt
augmentation, the finalized prompts are ready to be fed through the LLMs to be queried for VIP instantiation.

C. Proposed LLM-based flow for VIP Instantiation

The third stage involves VIP instantiation through an LLM agent, where augmented prompts are iteratively queried
to generate the desired VIP instantiation for each respective code partition. This stage leverages the deployed aug-
mentation methods to enhance the prompts and guide the LLM toward accurate and efficient VIP instantiation.

- Context Learning Method:
In this approach, the deployed prompt incorporates a general system prompt tailored for each target VIP,
such as FIFO or Arbiter VIPs. This prompt includes a set of general rules to instruct the LLM on how to
instantiate the VIP, supplemented by specific instructions derived from experimental observations. The
flow then combines these elements into a final prompt, integrating the In-Context Learning (ICL) compo-
nent with RTL code chunk. This ensures that the LLM generates VIP instantiations that adhere to best prac-
tices and the requirements identified during earlier stages of experimentation.

- Retrieval-Augmented Generation (RAG) Method:
For this method, the process begins by identifying the target VIP to be instantiated. Relevant examples and
details are retrieved from the FV knowledge vector database using the RAG approach. These extracted ele-
ments are appended to the initial prompt for the specific RTL code chunk. By incorporating these precise,
contextually relevant details into the prompt, the LLM’s prompt is enriched, producing responses that are
not only accurate but also well-informed by prior knowledge stored in the RAG vector database. This ap-
proach enhances the overall reliability and quality of the VIP instantiation process.

The LLM used for both the baseline and ICL experiment was a llama model fine-tuned on internal code documenta-
tion including Verilog code. For the RAG, we used the open-source Llama3-70b-instruct endpoint giving additional
value to the RAG approach for VIP instantiation by demonstrating expensive fine-tuning to the domain is not neces-
sary for correct VIP instantiation. Querying the LLM for each partition of the code is costly in many cases as some
of the Verilog files we performed our experiment on contained hundreds of thousands of lines of code making the
aggregate inference time hours. We optimized this runtime bottleneck by creating methods to identify with greater
probability the partitions of code that contained the desired FIFO and arbiter modules and only processed these cho-
sen chunks. These helper methods are designed to use the naming conventions of FIFOs and arbiters we can
strongly assume formal verification engineers follow their code syntax and ignore all chunks that now have any
module instantiations for FIFOs and arbiters. This function ensures every FIFO and arbiter will be processed, but
false positives can occur where an LLM receives a code partition, hallucinates, and instantiates erroneous VIPs for
the misidentified module instantiation. These false positives are easily detected in post-processing. Following the
completion of the LLM queries, the aggregated output results are ready for the final post-processing stage of the
flow.

D. Results Post-processing Pipeline

The fourth and final stage of our VIP instantiation flow is the post-processing of the LLM VIP instantiations. Here,
we augment and filter the LLM output responses to complete the VIP instantiation. First, we detect false positives
by exploiting patterns in the outputted response that signal that the response was a hallucination. Specifically, in the
prompts, LLMs are instructed when a signal needed for VIP instantiation is not found in the inputted code partition,
to flag the signal as unknown. For the FIFO and Arbiter modules, most of the signal ports are defined in code. Sel-
dom edge cases where a verification engineer needs to identify a signal for a VIP instantiation manually; 2 or more
unknown signals mean the instantiated VIP was a false positive, and we can confidentially void the hallucination in
the final output. After false positives are filtered, we are left with VIPs instantiated for their respective identified
modules of either FIFO or arbiter. We developed driving post-processing functions for each module to complete the
VIP instantiations and make them valid VIPs. For instance, instantiations of FIFOs sometimes need additional post-
processing to fill in the FIFO depth and data width. These parameters are requirements for the VIP to be complete,
but these values are sometimes not in the code file. To complete the VIPs for these cases, we developed an auto-
matic retrieval process to extract the FIFO depth and data width for FIFO modules in the module’s respective source
code. These values are then injected into the LLM output to complete the instantiation, leaving us with a complete
and correct VIP instantiation for a FIFO module. Finally, these post-process responses are aggregated and written to
an output file and ready to be used in the next part of the formal verification process of verifying the Verilog code.

e -
Stage 1: Data Pre-processing Stage 2: Prompt Augmentation
Option 1 Option 2 Option 3
— RAG System

In-Context

Generate LLM Prompt For FIFO VIP Learning

Raw Data Prompts for Each

VIP
Prompts + Code
@ ﬁ Blocks

»

Examples of Each
VIP

Prompt For Arbiter VIP
Data
. Code Blocks
Processing Prompts + Code
Blocks

Stage 3: LLM VIP Instantiation

VIP Instantiation For FIFO VIP

Prompts + Code
Blocks
Run LLM

Stage 4: LLM Output Post-Processing

8
S
i ®
o € 5
Full List of all VIP HE Analysis
Instantiation a E, Retrieved details /

E 3 examples

! W~ Responses for - .

_] o VIP Instantiation For Arbiter VIP

= Instantiation

Response Analyze Prompts + Code

Processing

Instantiation that Responses for
n

Blocks

==

Results

Listof VIP

Run LLM
Analysis

needs review arbiter

.

Retrieved details /
examples

———it

Fig. 3- Proposed LLM-based framework for code generation for VIP instantiation

VI. RESULTS AND DISCUSSION

Starting from the RTL Verilog code of the target design, the proposed VIP instantiation flow has been used to in-
stantiate FIFO and Arbiter VIPs for several DUTS. Table I compares the effectiveness of three prompt augmentation
techniques—Baseline, In-Context Learning (ICL), and Retrieval-Augmented Generation (RAG)—using two
distinct LLMs, chipmixtral 8x7b chat tp4 trt h100 and Llama-3-70b, for generating VIP assertions in FIFO and
ARB components.

A. Comparison of Different Prompt Augmentation Techniques

Baseline: This approach, tested with the chipmixtral 8x7b_chat tp4 trt h100 model, was not able to cor-
rectly identify and instantiate either of the VIPs. In Table I, all instances for assert_vip_fifo and as-
sert_vip_arb were marked as "missing," indicating that baseline prompts alone are insufficient for generat-
ing correct VIP assertions.

In-Context Learning (ICL): When enhanced with ICL, the chipmixtral 8x7b_chat tp4 trt h100 model
showed moderate improvements. For assert vip_fifo, ICL produced 4 correct, 1 incorrect, and 2 missing
outputs. However, results were less consistent for assert vip_arb, with only 1 correct output, 4 incorrect,
and 7 missing instances. While ICL improved performance compared to Baseline, its results were variable,
particularly with more complex designs.

Retrieval-Augmented Generation (RAG): this method delivered the best performance. For FIFO VIP
(assert_vip_fifo), RAG produced 7 out of 7 correct outputs, achieving a 100% accuracy rate. For arbiter
VIP (assert vip arb), RAG generated 11 correct outputs with only one incorrect, showing strong reliability
across both VIP assertion tasks.

B. Comparison of the Performance of Different LLM Models

1.

Chipmixtral_8x7b: Tested with both Baseline and ICL prompt augmentations, this model struggled to de-
liver consistently accurate outputs. The Baseline approach yielded no correct results, while ICL showed
some improvement with limited success, particularly in generating assert vip_fifo assertions. However, its
overall performance was inconsistent, especially for the more complex assert vip_arb task.

Llama-3-70b (with RAG): The Llama-3-70b model, paired with RAG, substantially outperformed chip-
mixtral 8x7b _chat in both assertion tasks. It achieved perfect accuracy for assert vip fifo and nearly per-
fect results for assert vip_arb. This suggests that Llama-3-70b, particularly with RAG, has a stronger capa-
bility in generating accurate and reliable VIP assertions, demonstrating its suitability for complex verifica-
tion tasks.

In summary, the RAG retrieval process provides a far greater benefit to the overall accuracy of instantiation com-
pared to the baseline and ICL methods with few-shot learnings, as demonstrated in Table I below. Additionally,
because RAG method used an open-source Llama3 endpoint instead of the finetuned chip model trained on internal
data including Verilog code. This means that the successful results of the RAG have even more value as the ap-
proach does not rely on a fine-tuned model to execute its task, meaning that we can update our procedure with better
general LLMs that only improve our VIP instantiation solution. In other words, our flow is designed to match the
pace of ongoing LLM research and to be updated with the inference capabilities of the latest, strongest LLMs in the
industry. Furthermore, due to our modularized procedure, our LLM-powered VIP instantiation process has the po-
tential to support many more VIPs with fast development and is applicable beyond any project.

TABLE I: RESULTS OF THE VIP INSTANTIATION FOR BOTH ASSERT VIP_FIFO AND ASSERT VIP ARB.

A LLM Model Prompt Correct Incorrect Missing Total #
Augmentation of in-

stances
assert_vip_fifo chipmixtral_8x7b Baseline 0 0 7 7
chipmixtral_8x7b ICL 4 1 2 7
Llama-3-70b RAG 7 0 0 7
chipmixtral_8x7b Baseline 0 0 12 12
chipmixtral_8x7b ICL 1 4 7 12
Llama-3-70b RAG 11 1 0 12

Key for Table I:

Correct: This column means completely correct instantiation, all signals correct

Incorrect: This column means VIP instantiation for modules present with either incomplete or wrong signals
Missing: This column means missing VIP instantiation for the module

VII. REFERENCES

[1] Fang, W., Li, M., Li, M., Yan, Z., Liu, S., Zhang, H., & Xie, Z. (2024). Assertllm: Generating and evaluating hardware verification asser-
tions from design specifications via multi-llms. arXiv preprint arXiv:2402.00386.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[3] Meta. Meta llama 3, 2024.

[4] Hugo Touvron and et al. Llama 2: Open foundation and fine-tuned chat models, 2023.

[5] Albert Q. Jiang, et al. Mixtral of experts. ArXiv, abs/2401.04088, 2024.

[6] Gemini Team Google. Gemini: A family of highly capable multimodal models. ArXiv, abs/2312.11805, 2023.

[7] Mingjie Liu, et al. Chipnemo: Domain-adapted llms for chip design. ArXiv, abs/2311.00176, 2023

[8] Zhuolun He, Haoyuan Wu, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu. Chateda: A large language model powered
autonomous agent for eda. 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD (MLCAD), pages 1-6, 2023

[9] Kiran Thorat, Jiahui Zhao, Yaotian Liu, Hongwu Peng, Xi Xie, Bin Lei, Jeff Zhang, and Caiwen Ding. Advanced large language model
(llm)-driven verilog development: Enhancing power, performance, and area optimization in code synthesis. ArXiv, abs/2312.01022, 2023.

[10] YunDa Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing rtl syntax errors with large language models. ArXiv,
abs/2311.16543,2023

[11] Wenji Fang, Mengming Li, Min Li, Zhiyuan Yan, Shang Liu, Hongce Zhang, and Zhiyao Xie. Assertllm: Generating and evaluating hard-
ware verification assertions from design specifications via multi-llms. ArXiv, abs/2402.00386, 2024

[12]Marcelo Orenes-Vera, Margaret Martonosi, and David Wentzlaff. Using llms to facilitate formal verification of rtl. ArXiv, abs/2309.09437,
2023.

[13]Foster, H. (2021). Part 8: The 2020 Wilson Research Group Functional Verification Study. Accessed: 2024-07-25.

[14] Mark Chen, et al. Evaluating large language models trained on code, 2021.

[15]Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask
language understanding, 2021

[16]Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael
Terry, Quoc V. Le, and Charles Sutton. Program synthesis with large language models. ArXiv, abs/2108.07732, 2021.

[17] Orenes-Vera, M., Martonosi, M., & Wentzlaff, D. (2023). From rtl to sva: LIm-assisted generation of formal verification testbenches. arXiv
preprint arXiv:2309.09437.

[18]Zhang, K., Li, J., Li, G., Shi, X., & Jin, Z. (2024). Codeagent: Enhancing code generation with tool-integrated agent systems for real-world
repo-level coding challenges. arXiv preprint arXiv:2401.07339.

[19]Harry Foster. "the 2022 wilson research group ic/asic functional verification treads”. White Paper. Wilson Research Group and Mentor, A
Siemens Business, 2022.

[20] Thomas Kropf. Introduction to formal hardware verification. Springer Science & Business Media, 1999.

[21]Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In Dexter
Kozen, editor, Logics of Programs, pages 52-71, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[22] Edmund M. Clarke, E. Allen Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic speci-
fications. ACM Trans. Program. Lang. Syst., 8(2):244-263, apr 1986.

[23] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using satisfiability solving. Formal methods
in system design, 19:7-34, 2001.

[24] Dong, Qingxiu, et al. "A survey on in-context learning." arXiv preprint arXiv:2301.00234 (2022).

