(2024

DESIGN AND VERIFICATION ™

DVLCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Forward Progress in Formal Verification
Liveness vs Safety

Ankit Garg

<A NVIDIA

Problem

e Verification is HARD

* Everything 100% verified according to spec
* Per Spec Input ===Guarantees===> valid output

* How to guarantee
* Wrong Input |===> Invalid output/Error
* |f system Hangs, there’s no output

2924

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Design Router block for high performance data center solutions
Purpose Interact with internal/external system controllers

Problem Can’t guarantee external system controllers stick to the spec

X
X
= I

* [rrespective of what controller drives, System should never HANG

e Forward progress testing is critical to ensure this doesn’t happen

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Forward Progress

* Making progress towards its intended goal without getting stuck.

* Means design shouldn’t have
* Deadlock (a transaction stuck in a non-default state and can’t move)
* Livelock (a transaction is changing states but doesn’t reach the end goal)
 Starvation (transaction is being blocked due to low priority)

L0

2024

ESIGN AND VERIEICATION™

How

Simulation based Verification

e Corner Case tests
e Random tests (limited by the constraints)

e Stress tests

e Error Injection tests

Formal Verification

e Safety assertion (nothing bad happens)
e Liveness assertion (something good eventually happens)

=)

Liveness vs Saftey

Liveness assertions Safety assertion

assert property (A |-> strong(##[0:$]1B)) E assert property (A |-> ##N B)

* Are simpler to write Complex to write

* Wider scope Narrow scope

 Slower convergence Faster to converge vs Liveness

e Can’t rely on bounds Bounded analysis can be done

* Need aggressive abstraction Would need less abstraction

 Not enabled in simulation verif Can be enabled in simulation verif

2024

DESIGN AND VERIEICATION™

Safety assertion-based flow

* FIFO overflow and underflow check

e State Machine never enter invalid state
* Timeout counters reset check

* Transaction order check

* Protocol violation check

e Counter based forward progress checks

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Liveness assertion-based flow

* |dentify Deadlock/Livelocks
* Liveness assertions on cyclic logic FSMs & Counters

assert (State==~(reset state) |-> strong(##[1:$] State == reset state))

* |dentify Starvation points
* Liveness assertions on Arbiters, credit-valid, request-valid paths

-
1

assert (req == x |-> strong (##[0:$] grant==x))
E assert (credit ==0 |-> strong (##[0:3] reload credit))

2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Challenges

* Convergence

» Biggest challenge, as even a simple 5 state FSM could have huge COIl (Cone of
Influence) and never fully prove

* Complexity reduction

* Reduce the COI of assertion, without over-constraining or losing important design
elements

e Getting constraints right
* It’s a challenge to figure out minimum constraints yet have proofs

* Proof Maintenance
* A small design change can throw a proven Liveness assertion to not converge

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Techniques

e Abstraction
 Memories/FIFO abstraction: hit corner case faster
e Counter abstraction: jump states, especially for slower protocols
* Reset abstraction: hit deep states with tool's proof depth limits

e

* Boundary Boxing & Driver Snipping

e Under-constraint (leave snipped port as is)
e Over-constraint (drive constant value)
e Correct constraint (connect assume model of the driver) l

2024

ESIGN AND VERIEICATION™

Techniques cont....

* Assume guarantee

| | assume (seq l|->strong (##[1:3] seq 2))
e e O l assume (seq 2|->strong (##[1:$] seq 4))

assert (seq l|->strong (##[1:3] seg N))

* Splitting liveness assertions (case split)

I [state==state 1 |-> strong(##[1l:$]state==reset state)
State==state 2 |-> strong (##[1l:$]state==reset state)

2024

DESIGN AND VERIEICATION™

Gotchas

* Don’t use weak liveness assertions

* There’s no bounded proven in liveness assertions

* Setup formal regression

* Avoid mixing liveness and safety assertions in one run

* For faster convergence of a liveness assertion
e Don’t add more resources Q
* Reduce complexity &

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

Case Study - Formal setups

* Forward progress liveness * All liveness assertions
 Minimal constraints (safety & Liveness)

» Forward progress safety * All safety assertions
* All necessary constraints (safety)

* Forward progress no de-hang * All functionality assertions
* All necessary constraints

* All de-hang logic snipped

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

Case Study - Run Results

* Bug Distribution * Convergence improvement

code review __
4%

100.00%

FP No-timeout__—

8% Assume-Gurantee &

Case-splitting, 87.50%

Aggresive bboxing,
FSM isolation, 50.00%

counter & memory
abstraction, 21.80%

ASSERTION CONVERGENCE

o
o
Q
X

TIME

ac l/em DESIGN AND VERIEICATION™
CONFEREMNCE AND EXHIBITION

Case study - Summary

* Liveness assertions » Safety assertion

assert property (A |-> strong(##[o:$]B))§ assert property (A |-> #4N B)

e Faster bring up * Faster convergence

* More bugs found * Faster to sign-off

* Wider scope, better coverage * Coverage in simulation environment

* High verification confidence

Conclusion

* Liveness assertions while late to full proofs are fast with bugs.
* Start with Liveness assertions, while working on safety assertions.
 Safety did find some corner case failures which liveness couldn’t.

e Recommend to use healthy mix of both.

2024

DESIGN AND VERIEICATION™

DVI:I:IN

NFEREMNCE AND EX|

Questions ?

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

	Slide 1: Forward Progress in Formal Verification Liveness vs Safety
	Slide 2: Problem
	Slide 3: Why
	Slide 4: Forward Progress
	Slide 5: How
	Slide 6: Liveness vs Saftey
	Slide 7: Safety assertion-based flow
	Slide 8: Liveness assertion-based flow
	Slide 9: Challenges
	Slide 10: Techniques
	Slide 11: Techniques cont.…
	Slide 12: Gotchas
	Slide 13: Case Study - Formal setups
	Slide 14: Case Study - Run Results
	Slide 15: Case study - Summary
	Slide 16: Conclusion
	Slide 17

