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Problem

e Verification is HARD

* Everything 100% verified according to spec
* Per Spec Input ===Guarantees===> valid output

* How to guarantee
* Wrong Input |===> Invalid output/Error
* |f system Hangs, there’s no output
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Design Router block for high performance data center solutions
Purpose Interact with internal/external system controllers

Problem Can’t guarantee external system controllers stick to the spec

X
X
= I

* [rrespective of what controller drives, System should never HANG

e Forward progress testing is critical to ensure this doesn’t happen
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Forward Progress

* Making progress towards its intended goal without getting stuck.

* Means design shouldn’t have
* Deadlock (a transaction stuck in a non-default state and can’t move)
* Livelock (a transaction is changing states but doesn’t reach the end goal)
 Starvation (transaction is being blocked due to low priority)

L0
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How

Simulation based Verification

e Corner Case tests
e Random tests (limited by the constraints)

e Stress tests

e Error Injection tests

Formal Verification

e Safety assertion (nothing bad happens)
e Liveness assertion (something good eventually happens)
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Liveness vs Saftey

Liveness assertions Safety assertion

assert property (A |-> strong(##[0:$]1B)) E assert property ( A |-> ##N B )

* Are simpler to write Complex to write

* Wider scope Narrow scope

 Slower convergence Faster to converge vs Liveness

e Can’t rely on bounds Bounded analysis can be done

* Need aggressive abstraction Would need less abstraction

 Not enabled in simulation verif Can be enabled in simulation verif
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Safety assertion-based flow

* FIFO overflow and underflow check

e State Machine never enter invalid state
* Timeout counters reset check

* Transaction order check

* Protocol violation check

e Counter based forward progress checks
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Liveness assertion-based flow

* |dentify Deadlock/Livelocks
* Liveness assertions on cyclic logic FSMs & Counters

assert (State==~(reset state) |-> strong(##[1:$] State == reset state))

* |dentify Starvation points
* Liveness assertions on Arbiters, credit-valid, request-valid paths

-
1

assert (req == x |-> strong (##[0:$] grant==x))
E assert (credit ==0 |-> strong (##[0:3] reload credit))
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Challenges

* Convergence

» Biggest challenge, as even a simple 5 state FSM could have huge COIl (Cone of
Influence) and never fully prove

* Complexity reduction

* Reduce the COI of assertion, without over-constraining or losing important design
elements

e Getting constraints right
* It’s a challenge to figure out minimum constraints yet have proofs

* Proof Maintenance
* A small design change can throw a proven Liveness assertion to not converge
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Techniques

e Abstraction
 Memories/FIFO abstraction: hit corner case faster
e Counter abstraction: jump states, especially for slower protocols
* Reset abstraction: hit deep states with tool's proof depth limits

e

* Boundary Boxing & Driver Snipping

e Under-constraint (leave snipped port as is)
e Over-constraint (drive constant value)
e Correct constraint (connect assume model of the driver) l
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Techniques cont....

* Assume guarantee

| | assume (seq l|->strong (##[1:3] seq 2))
e e O l assume (seq 2|->strong (##[1:$] seq 4))

assert (seq l|->strong (##[1:3] seg N))

* Splitting liveness assertions (case split)

_______________________________________________________________________________________________________________________

I [ state==state 1 |-> strong(##[1l:$]state==reset state)
State==state 2 |-> strong (##[1l:$]state==reset state)
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Gotchas

* Don’t use weak liveness assertions

* There’s no bounded proven in liveness assertions

* Setup formal regression

* Avoid mixing liveness and safety assertions in one run

* For faster convergence of a liveness assertion
e Don’t add more resources Q
* Reduce complexity &
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Case Study - Formal setups

* Forward progress liveness * All liveness assertions
 Minimal constraints (safety & Liveness)

» Forward progress safety * All safety assertions
* All necessary constraints (safety)

* Forward progress no de-hang  * All functionality assertions
* All necessary constraints

* All de-hang logic snipped
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Case Study - Run Results

* Bug Distribution * Convergence improvement

code review __
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Case study - Summary

* Liveness assertions » Safety assertion

assert property (A |-> strong(##[o:$]B))§ assert property ( A |-> #4N B )

e Faster bring up * Faster convergence

* More bugs found * Faster to sign-off

* Wider scope, better coverage * Coverage in simulation environment

* High verification confidence




Conclusion

* Liveness assertions while late to full proofs are fast with bugs.
* Start with Liveness assertions, while working on safety assertions.
 Safety did find some corner case failures which liveness couldn’t.

e Recommend to use healthy mix of both.
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Questions ?
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