
Forward Progress in Formal Verification
Liveness vs Safety

Ankit Garg

Problem

• Verification is HARD

• Everything 100% verified according to spec
• Per Spec Input ===Guarantees===> valid output

• How to guarantee
• Wrong Input |===> Invalid output/Error

• If system Hangs, there’s no output

Why

• Irrespective of what controller drives, System should never HANG

• Forward progress testing is critical to ensure this doesn’t happen

Design Router block for high performance data center solutions

Purpose Interact with internal/external system controllers

Problem Can’t guarantee external system controllers stick to the spec

Forward Progress

• Making progress towards its intended goal without getting stuck.

• Means design shouldn’t have
• Deadlock (a transaction stuck in a non-default state and can’t move)

• Livelock (a transaction is changing states but doesn’t reach the end goal)

• Starvation (transaction is being blocked due to low priority)

1

2

3

R

1

2

1Req
Grant

1

2

3

R

How

Simulation based Verification

• Corner Case tests

• Random tests (limited by the constraints)

• Stress tests

• Error Injection tests

Formal Verification
• Safety assertion (nothing bad happens)

• Liveness assertion (something good eventually happens)

Liveness vs Saftey

Liveness assertions

• Are simpler to write

• Wider scope

• Slower convergence

• Can’t rely on bounds

• Need aggressive abstraction

• Not enabled in simulation verif

Safety assertion

• Complex to write

• Narrow scope

• Faster to converge vs Liveness

• Bounded analysis can be done

• Would need less abstraction

• Can be enabled in simulation verif

assert property (A |-> strong(##[0:$]B)) assert property (A |-> ##N B)

Safety assertion-based flow

• FIFO overflow and underflow check

• State Machine never enter invalid state

• Timeout counters reset check

• Transaction order check

• Protocol violation check

• Counter based forward progress checks

assert property (flag_bit && ~system_stall |-> ##[0:N-M] B)

Liveness assertion-based flow

• Identify Deadlock/Livelocks
• Liveness assertions on cyclic logic FSMs & Counters

• Identify Starvation points
• Liveness assertions on Arbiters, credit-valid, request-valid paths

assert (State==~(reset_state) |-> strong(##[1:$] State == reset_state))

assert (req == x |-> strong(##[0:$] grant==x))

 assert (credit ==0 |-> strong(##[0:$] reload_credit))

Challenges

• Convergence
• Biggest challenge, as even a simple 5 state FSM could have huge COI (Cone of

Influence) and never fully prove

• Complexity reduction
• Reduce the COI of assertion, without over-constraining or losing important design

elements

• Getting constraints right
• It’s a challenge to figure out minimum constraints yet have proofs

• Proof Maintenance
• A small design change can throw a proven Liveness assertion to not converge

Techniques

• Abstraction
• Memories/FIFO abstraction: hit corner case faster

• Counter abstraction: jump states, especially for slower protocols

• Reset abstraction: hit deep states with tool's proof depth limits

• Boundary Boxing & Driver Snipping
• Under-constraint (leave snipped port as is)

• Over-constraint (drive constant value)

• Correct constraint (connect assume model of the driver)

constraint

Techniques cont.…

• Assume guarantee

• Splitting liveness assertions (case split)

state==state_1 |-> strong(##[1:$]state==reset_state)

State==state_2 |-> strong(##[1:$]state==reset_state)

...

assume (seq_1|->strong(##[1:$] seq_2))

assume (seq_2|->strong(##[1:$] seq_4))

assert (seq_1|->strong(##[1:$] seq_N))

assert (seq_1|-> strong(##[1:$]seq_N))

State==~(reset_state) |-> strong(##[1:0] state==reset_state)

Gotchas

• Don’t use weak liveness assertions

• There’s no bounded proven in liveness assertions

• Setup formal regression

• Avoid mixing liveness and safety assertions in one run

• For faster convergence of a liveness assertion
• Don’t add more resources

• Reduce complexity

Case Study - Formal setups

• Forward progress liveness

• Forward progress safety

• Forward progress no de-hang

• All liveness assertions

• Minimal constraints (safety & Liveness)

• All safety assertions

• All necessary constraints (safety)

• All functionality assertions

• All necessary constraints

• All de-hang logic snipped

Case Study - Run Results

• Bug Distribution • Convergence improvement

Case study - Summary

• Liveness assertions

• Faster bring up

• More bugs found

• Wider scope, better coverage

• High verification confidence

• Safety assertion

• Faster convergence

• Faster to sign-off

• Coverage in simulation environment

assert property (A |-> strong(##[0:$]B)) assert property (A |-> ##N B)

Conclusion

• Liveness assertions while late to full proofs are fast with bugs.

• Start with Liveness assertions, while working on safety assertions.

• Safety did find some corner case failures which liveness couldn’t.

• Recommend to use healthy mix of both.

Questions ?

	Slide 1: Forward Progress in Formal Verification Liveness vs Safety
	Slide 2: Problem
	Slide 3: Why
	Slide 4: Forward Progress
	Slide 5: How
	Slide 6: Liveness vs Saftey
	Slide 7: Safety assertion-based flow
	Slide 8: Liveness assertion-based flow
	Slide 9: Challenges
	Slide 10: Techniques
	Slide 11: Techniques cont.…
	Slide 12: Gotchas
	Slide 13: Case Study - Formal setups
	Slide 14: Case Study - Run Results
	Slide 15: Case study - Summary
	Slide 16: Conclusion
	Slide 17

