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Abstract

The advent of opensource hardware, epitomized by the RISC-V processor, is opening up the avenues for opensource hardware
verification tooling and flows. RISCV-DV [1] is an opensource random instruction generator widely used for functional verification of
RISC-V cores [2]. This paper expounds on a parallelized RISCV-DV port [3] coded in Embedded UVM (eUVM). Novel techniques
for enhancing testbench performance are also explored to affect a multicore UVM testbench implementation that generates millions
of constrained-randomized RISC-V instructions in a second (using multicore parallelism), a speedup of over 100x when compared
to the original RISCV-DV implementation coded in SystemVerilog (SV) UVM.

I. INTRODUCTION

A. The Curious Case of Processor Verification

High-end RISC CPU cores encompass complex hardware architectures comprising intricate maneuvers like instruction re-
ordering, pipelines, branch prediction, and hyperthreading. Functional verification of such processors requires a significant effort
involving generation of 1015 (thousands of millions of millions) constrained-random instructions [4]. The RISCV-DV project,
coded in SV/UVM, generates only about 10,000 instructions in a second. At this rate, it takes several thousand machine years
just to generate the required number of sequences of randomized RISC-V instructions.

B. The Era of High Performance Computing

Thanks to Dennard’s Scaling [5], CPU frequency and
performance grew exponentially until the year 2005. For
verification engineers, Dennard’s Scaling proved to be a boon.
During the period of its impact, any increase in complexity
of hardware designs (owing to Moore’s Law) was offset by
a corresponding increase in CPU frequency and performance,
thus affecting proportionately faster simulation runs.

Dennard’s Scaling continued to hold its sway until the
year 2005. Post that, its impact started to wane. That very
year, Herb Sutter wrote a seminal paper titled “The Free
Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software” [6]. Henceforth, software developers could not
rely on an increase in processor frequency as a means to
improve software efficacy. Programmers were now required
to code multicore-enabled concurrent programs in order to
boost software performance, marking the start of the era of
High Performance Computing (HPC).
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Fig. 1: CPU Performance Over the Last 50 Years

C. The Elephant in the Room

Testbench performance is proving to be the proverbial elephant in the room. Even as modern HDL Simulators enable
parallelized multicore simulation of RTL designs [7], little has been done to enable multicore parallelization of testbenches
(refer section II-A), forcing verification engineers to adopt pragmatic techniques to enhance testbench efficacy. A distributed
stimulus generator architecture that invokes Inter-Process Communication (IPC) for the exchange of generated transactions
between multiple simulator instances (running as separate Linux processes) is explored in [8]. A multicore predictor architecture
that utilizes a C++ thread pool via Direct Programming Interface (DPI) is realized in [9].

Contemporarily, the emergence of hybrid CPU/FPGA architectures and SoCFPGAs is enabling co-emulation platforms [10],
wherein the Design under Test (DuT) gets mapped to an FPGA, but the testbench still continues to run on an HDL simulator.
A “transaction-based acceleration” approach that proposes “an untimed hardware verification language domain” for accelerating
the testbench for co-emulation has been broached in both [11] and [12].
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Incidentally, SV lacks support for Transaction Level Modeling (TLM) [13] at the very fundamental level. An essential tenet of
TLM requires temporal decoupling of data from simulation time and events. All integral variables in SV (including the two-state
types such as byte, shortint, int, and longint), and the expressions thereof, implicitly hold a value-change event that
enables the end-user to write wait expressions (such as wait(a > b)). As a result, any computational algorithm coded in
SV executes an order of magnitude slower than the corresponding code in C/C++ and any other native programming languages.
Section IX-I reflects further on the impact of non-native datatypes on the algorithmic performance of SV testbenches.

II. THE STATE OF THE ART

A. SystemVerilog/UVM

The golden reference RISCV-DV instruction generator implementation is coded in SV. But complex constraint solving and
sub-optimal algorithmic implementation (refer section VI for details) limits the speed of its execution to only about ten thousand
instructions in a second. Additionally, SV lacks native data-types. Consequently, any interface to an emulation platform requires
interfacing with C/C++ via the DPI layer. Reference [14] offers a detailed exposition on how the runtime overhead of data
exchange via DPI can have an adverse impact on testbench performance.

From the HPC perspective, tool-level support for multicore parallelism
is limited to RTL and Gate-Level simulations and requires Design Level
Partitioning (DLP) [15]. Figure 2 depicts a typical verification setup
with a partitioned RTL design as DuT. Since RTL coding semantics
support only static variable scoping, multicore-enabled SV simulators are
able to identify static RTL segments that can be simulated concurrently
on multiple threads. Note that the exchange of signal data across the
partition boundaries happens only by value (not by reference) and only
via pins and ports that can be formally identified by the simulation tool.
Therefore, it becomes possible for the simulator to introduce appropriate
synchronization locks when passing data across the threads.

TESTBENCH

RTL

Fig. 2: Multicore RTL Simulators

On the other hand, a testbench is a completely different beast. A testbench is essentially behavioral, enables automatic data
scoping, and allows sharing of data by reference across its various components. To this end, enabling parallelism in a testbench
requires user-level programming language constructs [16] that facilitate synchronized access to shared data, which the current
SV language standard lacks.

Note that, though a testbench is always encapsulated in a separate module (or a program block), events corresponding to the
testbench are temporally staggered from those pertaining to the DuT in order to avoid race conditions [17]. Temporal staggering
of the DuT signal from those of the testbench is generally accomplished by use of the clocking block construct and/or the program
block construct. Consequently, tasks related to a testbench are never executed in parallel to the simulation tasks associated with
the DuT. As a result, a sequentially executed single threaded testbench becomes a bottleneck in a UVM/RTL simulation.

B. Python - CocoTB [18] and PyUVM

Despite being proposed as a futuristic language for Verification [19], Python has a huge drawback from the testbench
performance perspective. Being an interpreted scripting language, Python is inherently inefficient and has been benchmarked to
be fifty-seven times slower in comparison to native programming languages such as C/C++ [20].

1) Pygen – The Python Port of RISCV-DV : Pygen is a python-based opensource port of RISCV-DV and is hosted as a sub-
folder of the main RISCV-DV GitHub repository [1]. Pygen uses PyVSC [21] for solving constraints and is currently marred by
poor runtime performance. Additionally, PyVSC does not deploy a Binary Decision Diagram (BDD) solver and relies completely
on Satisfiability (SAT) solvers for solving multi-variable constraints. Consequently, the solutions produced by PyVSC tend to
have a non-uniform spread compared to SV and eUVM. Pygen currently performs more than a hundred times slower when
compared to the SV version of RISCV-DV and generates less than a hundred random RISC-V instructions in a second.

C. SystemC and C++

The SystemC port of the UVM library [22] currently relies on the CRAVE library [23] for constrained randomization. CRAVE
provides an integrated interface to a set of BDD and SAT solvers. But as of now, it can not handle complex RISCV-DV constraints.
Additionally, SystemC and CRAVE do not offer support for multicore parallelism.

The CRAVE library uses wrapper template types
(crv variable on line 2, in listing 1) to represent ran-
dom variables. On account of that, random variables
in CRAVE do not retain their native memory footprint,
thus severely hindering its efficacy and prowess.

Listing 1: Example Randomizable Class in CRAVE

1class myrand: public crv_sequence_item {
2crv_variable<int> x;
3crv_constraint constraint{x() < 32};
4// ....
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III. AN INTRODUCTION TO EUVM

eUVM is an opensource multicore-enabled implementation of Universal Verification Methodology (UVM) (IEEE 1800.2 1.0-
2020 Standard) coded in the D Programming Language (Dlang) [24]. Like SV, eUVM features sophisticated constraint solvers,
functional coverage constructs, and an automatic garbage collector (which it inherits from the D Programming Language).

Unlike the SV implementation of UVM which is tightly integrated with RTL simulation, eUVM takes a systems-centric
top-down approach, as illustrated in figure 3. A testbench coded in SV can interface to the system-level only through the DPI
layer, which may offer a significant performance penalty [14]. On the other hand, eUVM, having been implemented in the
D programming language, enables Application Binary Interface (ABI) level compatibility with C/C++. Consequently, C/C++
functions can be directly called from eUVM testbenches, and vice-versa, without any runtime overhead.

Being opensource, another advantage of eUVM is its portability across the various operating systems and machine architectures.
eUVM testbenches run on Windows, Android, Mac OS, and most versions of Linux. Additionally, eUVM testbenches can be
cross-compiled for embedded system platforms (running either Linux or Android), thus making it feasible to execute eUVM
testbenches on embedded boards, including SoCFPGA boards. Reference [25] contains a detailed exposition on how to render
an SoCFPGA board into a mini co-emulation platform, that enables a completely portable stimulus across the co-emulation and
simulation environments. Note that eUVM integrates with any RTL simulator via PLI/VHPI/FLI or DPI interface, and interfaces
natively with Verilator.

eUVM uses a native constraint solver to handle elementary single-domain
constraints. BDD-based solvers are used to handle multi-domain constraints
of medium complexity. Convoluted constraints that can not be handled by
BDD, are delegated to SMT/SAT solvers including Z3 [26], Boolector [27],
and CMSGen [28]. eUVM exploits advanced meta-programming capabilities
of the D language, such as User-Defined Attributes (UDA), Compile-Time
Function Evaluation (CTFE), Code-Introspection, and Generative Programming,
to realize a high-performance constraint processor. While Code-Introspection
and CTFE enable eUVM to parse and analyze constraints at compile time,
UDAs (syntactically akin to Python Decorators) allow eUVM to maintain a
native memory footprint of the randomized data elements, thus enabling ease
of data interoperability with C and C++. Note that all the constraint solvers
integrated into eUVM are multicore-enabled.

A. Grokking Testbench Parallelism in eUVM

The UVM base class library needs a discrete event simulator in order to
synchronize testbench tasks and processes. While PyUVM does not implement
a simulator of its own, it piggybacks on an interfaced RTL simulator to
schedule its python co-routines. On the other hand, UVM-SystemC [22] uses
the underlying SystemC simulation engine to schedule tasks. Likewise, eUVM
too implements its own discrete-event simulator to schedule testbench related
tasks and events. As illustrated in figure 4, the eUVM simulator can be broadly
partitioned into a Task Executor and a Scheduler.

Runnable
Tasks Exist?

Process
Immediate Events

Execute
Runnable Tasks

Update
Signal Values

Increment
Simulation Time

Delta Events
Exist?

Timed Events
Exist?

Push Triggered
Tasks to Runnable
Process Queue

Yes

Yes

No

Yes

No

No

Start

End

TASK EXECUTOR

SCHEDULER

Fig. 4: eUVM Discrete-Event Simulator
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Listing 2: UVM Sequence Body

1override void body() {
2trans = new seq_item("trans");
3trans.addr = addr;
4// ..
5start_item(trans);
6finish_item(trans);
7}

For the limited purpose of understanding the feasibility of parallelism in testbenches, figure 5 outlines a high-level abstraction
of an event simulator. The scheduler manages event queues and schedules the triggered tasks for execution. Note that in a
single-threaded simulator, the task executor executes runnable tasks sequentially on a single CPU thread on the host machine.

Before delving into a multicore-enabled parallelized testbench simulator, a little perspective into the sequential execution of
tasks is in order. In the context of a UVM testbench, these tasks are nothing but the run phases of the various UVM components,
the body methods of the various sequences, and the forks that may have been spawned. Most simulators implement these tasks
as user-threads (or cooperative threading).

Listing 2 outlines the body task of a typical UVM sequence. As the simulator encounters a call to any blocking function such
as start item or finish item, the simulation control moves over to another testbench component such as the driver that transfers
the uvm sequence item ’trans’ to the interface of the DuT. At this point, the sequence body task goes to sleep (yields) only to
be woken again once the driver has processed the sequence item and has sent back a notification to that effect by calling the
item done method.

An essential constituent of cooperative threading is context switching (as illustrated in figure 5). Whenever a task yields
(waits for an event), it must relinquish the control over the CPU thread so that another scheduled task may execute. But before
yielding, the task must save its state (comprising the call-stack and the CPU registers) in the host machine’s memory so that it
can recover from where it left, at a later stage when it wakes up again.

Note that context switching is a simulator’s runtime overhead and does not accomplish any useful functionality related to
the testbench. In order to optimize the performance, a testbench must avoid frequent context switching, by way of reducing
simulation events, as explained in [11], [12].

B. VIP Level Parallelism – A Multicore Testbench Architecture

Figure 6 abstracts the functionality of a multicore
simulator. A parallel simulator implements a stack
of Task Executors, each of which gets its own
CPU thread (posix thread) to execute its share
of tasks. Synchronization Barriers are required to
make sure that the task executors (now executing
tasks on multiple threads) remain synchronized with
the scheduler.
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Fig. 6: eUVM’s Multicore Simulator

For the performance aspect of multicore testbenches, it is imperative that we turn to Amdahl’s Law (figure 7) [29], which states
that “the overall performance improvement gained by optimizing a single part of a system is limited by the fraction of time that
the improved part is actually used” [30]. Since, at a given simulation time, a testbench simulator would only deal with a small
number of active events and processes, not much can be achieved by parallelizing the scheduler. In addition to the scheduler
being a sequential component, there is yet another overhead in multicore testbenches in the form of synchronization barriers.
Yet, if the tasks are comparatively more compute intensive, a multi-threaded testbench may bring about good performance gains.

Figure 8 depicts a typical testbench scenario that potentially gains from multi-threaded parallelism. A (sub)system-level
testbench often has multiple uvm agents or Verification IP (VIP)s [9]. Since it involves solving complex constraints, often the
most compute intensive process in a testbench is the randomization of the sequences. To distribute sequence randomization
across multiple threads, eUVM maps each uvm agent on a separate CPU thread.

C. Sequence Level Parallelism Using Asynchronous Worker Threads

The simple multicore testbench architecture discussed in the previous section only applies to testbenches with multiple VIPs and
therefore limits testbench parallelism to (sub)system-level verification. Moreover, the performance gain from such an architecture
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may not be optimal. One issue is that when the scheduler gets active, all the task executors deactivate. Another issue is that
for a high gain, the task load on each executor has to be balanced. That may not be the case when different types of VIPs get
mapped to the various executors.

In this section, we take a look at Sequence-Level Parallelization technique that enables us to take advantage of multicore
concurrency in simple module level testbenches that may constitute of only a limited number of UVM components.

Figure 9 exhibits a simple improvisation of the multicore simulator architecture discussed in the previous section. In addition
to multiple task executors, the new simulator architecture allows free-running threads that are termed worker threads in eUVM.

Worker threads are free-running asynchronous threads, but are hierarchically owned by the simulator. Though owned by the
simulator, a worker thread is completely decoupled from the scheduler and keeps running even when the scheduler activates.
Meaning thereby, a worker thread can not wait for an event, though they can trigger events.

But how would a worker thread exchange data with synchronous simulator tasks? Though the worker threads too share memory
with the tasks, to maintain synchronization across the threads, UVM stipulates that data exchanges happen via tlm fifos.

Figure 10a outlines the basic architecture of a UVM TLM Fifo. When the fifo is empty, a read operation gets blocked by an
explicit event encapsulated in the read port of the Fifo. A write operation into the TLM Fifo triggers the read event, thereby
re-activating the blocked task. Similarly, when the TLM fifo is full, it is the explicit event associated with the write port, that
blocks a write operation.

An asynchronous worker thread, being completely decoupled from the scheduler, does not have the ability to wait for a
simulator event. We need to formulate a synchronization mechanism to make it possible for a worker thread to share data with
other threads. To this end, eUVM implements three types of asynchronous TLM fifos as illustrated in figures 10b, 10c, and 10d.
There are three use-case scenarios covered by the three async fifo architectures.

An async write (figure 10b) type of asynchronous TLM fifo is required when a worker thread is used for generating UVM
transactions and the generated transactions are required to be transferred to a regular UVM task. When an async write TLM
Fifo is full, the worker thread gets blocked by a software semaphore instead of a UVM event. When the receiving task pulls
a transaction from the fifo, the pull method determines that a slot has become available. It then frees up the semaphore thus
unblocking the waiting worker thread. On the other hand, when the fifo is empty, the receiver gets blocked by a regular UVM
event associated with the read port. When the worker thread puts a transaction on the fifo, it also triggers the read event, thus
unblocking the synchronous task on the receiving end. An async read TLM fifo handles the reverse scenario, where a worker
thread is supposed to receive data from a regular UVM task.

Note that functionally asynchronous fifo constructs play the same role as played by IPC channels used in the distributed
sequencer [8] discussed in section I-C. To begin with, the eUVM testbench architecture uses shared-memory parallelization
semantics. Meaning thereby, a transaction (or its handle) generated on one CPU thread can simply be shared with other threads
without any IPC, packing/unpacking, or DPI overhead that the distributed model stipulates. As a result, a verification engineer
does not have to put extra effort for coding IPC and DPI related constructs. Moreover, since the communication between
the threads follows a shared-memory model, the execution time required for handing over data from one thread to another is
miniscule compared to a testbench architecture that deploys Inter-Process Communication.
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Fig. 9: eUVM’s Multicore Simulator
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eUVM also implements a completely asynchronous TLM fifo (as depicted in figure 10d) with a pair of semaphores replacing
the guard events at both the read and the write ports. This kind of TLM fifos are meant for data exchanges between two
asynchronous worker threads.

Worker thread constructs in eUVM make it possible to parallelize a UVM sequencer by creating a number of free-running
worker threads. In the scheme illustrated in figure 11, these threads feed a virtual sequencer in a round robin fashion. This may
be useful in a scenario where transaction generation and randomization is overly complex and time consuming and is choking
an RTL simulation.

D. Fine-Grained Parallelism – A Multicore Parallelized Fork

The parallelization scenarios covered so far are useful only when the generation and randomization of each transaction takes
substantial time. The overhead introduced by the exchange of data over asynchronous tlm fifo reads and writes would offset
any gains in case of simple transactions that have naive constraints and therefore a characteristic fast randomization.

eUVM offers yet another parallelization construct useful in such scenarios. Normally (as in SV), a thread created by the fork
construct creates a task and the created task executes on the same CPU thread as the parent thread that spawned the fork. But
eUVM also lets the user distribute the forked tasks on the CPU threads associated with the multiple task executors.

This can be useful when a sequence constitutes thousands of transactions, that are stored in a container (a queue or an array,
for instance). To accelerate the generation of such a sequence, eUVM allows forking multiple tasks with the sequence carrying
container sliced and split between the different tasks. Each spawned fork is tasked to process a slice of the original container.

The code snippet in listing 3 illustrates a typical parallelized form in eUVM. A call to the fork construct in eUVM returns a
Fork object that gets appended to the array (forks) of the Fork objects (line 3) for further processing. The body of the fork is
enveloped in a lambda function in order to capture the scoped variable i. This is slightly more intriguing compared to SV, which
allows the user to simply declare the scoped variables in the header part of the fork. On line 10, the method set thread affinity
is used to bind the forks to the respective parallel task executors. Finally, we join the forks, and akin to SV, the forks start
executing only after a call to join (or any other blocking construct for that matter).

Virtual Sequence

stream 1 stream 2 stream  nstream 3

worker threads running parallelly

Asynchronous TLM Fifos

Fig. 11: Sequence Level Parallelism

Listing 3: A Parallelized eUVM Fork Semantics

1Fork[] forks;
2for (int i=0; i!=threadCnt; ++i) {
3forks ˜= (int i) {
4return fork (() {
5randomizeSome(i);
6});
7} (i);
8}
9foreach (i, f; forks)
10f.set_thread_affinity(i);
11foreach (f; forks) f.join();
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IV. RISCV-DV TESTBENCH OPTIMIZATION TECHNIQUES

A comprehensive survey of generic testbench optimization techniques can be found in [31] and [32]. This paper focusses
primarily on HPC techniques as applied to the RISCV-DV project.

Section V delves into the RISCV-DV testbench architecture. Section VI lists the profiling tools and the methodology to find
the bottlenecks in the RISCV-DV generator. In section VII we explore an algorithmic bottleneck and refactor the code to ensure
a scalable (wrt instruction count) RISCV-DV architecture.

Multicore eUVM parallelization techniques as applicable to RISCV-DV generator, are expounded upon in section VIII. A
minor OOP architecture refactoring of RISCV-DV required to enable multicore-parallelism is discussed in section VIII-A.

Section IX lists some generic optimization techniques deployed to help optimize RISCV-DV performance. These relate to
constraint solving, memory allocation, and certain UVM related bottlenecks.

Section X establishes how the eUVM port of the RISCV-DV directly generates a binary dump that can straightway be loaded
in the simulation/emulation instruction memory, thus skipping assembler and linker altogether. Finally, section XI explains why
shared-memory parallelism is important for the future evolution of multicore testbenches.

V. RISCV-DV ARCHITECTURE AND IMPLEMENTATION

The output from the RISCV-DV generator is a bare-metal RISC-V assembly language program that can be compiled and
executed on a RISC-V processor core or its model. Alternately, the generator can also directly generate an executable binary dump
that may directly be loaded into a memory instance for the purpose of simulation or emulation. However, since SystemVerilog
does not provide a way to process native binary data, the SV version of RISCV-DV outputs an ASCII string instead of a binary
dump.

The RISC-DV instruction generator is highly customizable. A number of command-line options such as the required count of
sub-programs, the ratio of various kinds of instruction streams to generate, and many others, enable the user to fine-tune the test
program generation. In its simplest form, the generator can be used to generate millions of disparate random instructions that are
dumped into a single main function. When a count of sub-programs is specified from the command-line, the generator randomly
divides the specified total number of instructions into the specified number of sub-programs and stitches the test program’s call
stack with a suitable function call control-flow.

However, some categories of instructions do require sequencing and can not be executed or tested entirely in isolation. Take
the jump (jalr) instruction for instance. Injecting an unconstrained jump instruction in the generated test code can make the test
program jump directly to a location just before the test program’s exit, thus making the simulation skip most of the executable
test code in the test program. An unconstrained jump instruction can also lead to some entirely unwarranted scenarios such as
an infinite loop, or jumping to a location outside the test program’s scope. RISCV-DV therefore categorizes execution use-cases
such as loop sequences, load/store hazards, numeric computation exceptions etc, to name a few – into directed streams. The
instructions in these streams need to be constrained together as a sequence so that a desired and meaningful execution scenario
can be created. These streams are generated, randomized, and then inserted into an initially generated dump of non-directed
randomized instructions in a random manner. While injecting these streams into the dump, care is taken so that a directed stream
does not get inserted inside another directed stream that has already been injected in the initial dump.

Towards the end of the generation process, RISCV-DV revisits the merged stream and looks at the jump instructions embedded
therein in order to annotate the target locations with appropriate labels.

There are other finer details of the generation process that are not in the scope of this paper. References [33], [34] may be
useful for a more detailed exposition of some subtle aspects of the generator’s internal working. In this paper, however, we limit
ourselves to the macro-level details that are important to understand, analyze, and optimize the generator’s performance.

VI. PROFILING THE RISCV-DV GENERATOR

A comprehensive profiling strategy is essential to analyze algorithmic bottlenecks in the execution of an application before
trying to optimize its runtime. To this end, eUVM implements a uvm trace method that works just like the standard uvm info
method, but also lists the machine’s run-time clocked since the start of the simulation. As illustrated in listing 4, in order to
measure the time taken by a particular code fraction, a user needs to put a uvm trace call right before the code block, and
another just after it.

Listing 5 provides representative output from the uvm trace invocations coded in listing 4. The wall-clock time, listed in
square brackets just after the tag UVM TRACE, represents the snapshot of time taken at the uvm trace invocation.

Note that the RISCV-DV is highly parameterized and the execution time taken by its various components varies significantly
with the set of parameters chosen by the end-user. For the purpose of profiling, a comprehensive test, namely riscv instr base test,
was chosen with a mix of seven directed streams covering the whole spectrum of possible RISC-V instruction categories.
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Listing 4: Example uvm trace Invocation

1uvm_trace("GEN INSTR", "START", UVM_DEBUG);
2foreach (ref instr; instr_list)
3randomize_instr(instr, is_debug_program);
4uvm_trace("GEN INSTR", "DONE", UVM_DEBUG);

Listing 5: Example uvm trace Log Message

1UVM_TRACE [1.645711] ../riscv/gen/riscv_instr
2_stream.d(1) @ 0: reporter [GEN INSTR] START
3UVM_TRACE [4.502635] ../riscv/gen/riscv_instr
4_stream.d(4) @ 0: reporter [GEN INSTR] END

Four major bottlenecks were identified based on the results of profiling and analysis of the algorithmic complexity of the
various components of RISCV-DV. These bottlenecks are enumerated below in the decreasing order of their impact on the overall
execution time of the RISCV-DV generator.

1) The generator creates and randomizes directed instruction streams in a ratio specified by the user from the command-line.
These streams are created and randomized for each of the sub programs and the main function. Most of the time taken in
the generation of the streams can be traced to the time taken for execution of the constraint solvers.

2) RISCV-DV dumps a big chunk of the non-directed instruction stream into the respective instr lists meant for the main
program and the sub-programs. Here too, most of the server effort is spent on randomization and solving constraints.

3) The third bottleneck is formed when the RISCV-DV generator inserts the directed instruction streams into the non-directed
instruction stream. This bottleneck was found to become more severe with the increase in the number of instructions to be
generated, with an algorithmic complexity of O(n2).

4) The generator creates a formatted string to be dumped as an assembly language program. As it dumps thousands of
instructions, $sformatf is invoked repeatedly, resulting in as many memory allocations.

The first two in the above list of bottlenecks involve constraint solving and are linear in terms of algorithmic complexity. Since
linear complexity algorithms scale well with multicore parallelization, these bottlenecks were dealt with accordingly. Section
VIII explores the intricacies involved in parallelization, as well as the ways to achieve optimal performance gains. While the
fourth bottleneck too has a linear complexity, the possibility of its parallelization is marred by frequent memory allocation. In
section IX-D, we discover ways to reduce memory allocation (calls to malloc). A reduced count of memory allocation calls
helps reduce execution time and also paves the way to more scalable parallelization.

On the other hand, the third bottleneck is due to a sub-optimal algorithmic implementation. Since it requires a significant
architectural change, we deal with it first in the section that follows.

VII. RISCV-DV ALGORITHMIC OPTIMIZATIONS

A. Hammer a Nail, but Drive a Screw

Figure 12 helps in understanding the process of merging the Directed Streams in the Initial Random Dump of undirected
RISCV instructions. The RISCV instructions in a directed sequence are all tagged as atomic in order to identify and keep them
intact. The original RISCV-DV code implements the merge process in a greedy fashion.

First, a location to inject a directed stream sequence in the initial dump is picked randomly. If the randomly picked location
happens to be inside another directed sequence, another random number is picked to find another location that does not violate
the inserted sequence. The process of picking a random location is repeated up to ten times and if it still can not find a location
outside of already inserted directed streams, the last picked location is incremented until the boundary of the directed stream it
falls into is found and the new directed stream is inserted right thereafter.

Note that this process involves inserting a slice of elements in a SystemVerilog queue. It is a costly operation since all the
elements (before or) after the point of insertion need to be moved. If the number of instructions being generated is large, the
number of directed streams to be inserted also rises correspondingly, and the average size of the block of memory to be shifted
increases proportionately, resulting in an O(n2) complexity. The generator therefore does not scale well for an instruction count

Directed Streams

Initial Random Dump

Function Body
Fig. 12: Merging of Directed Streams in to the Initial Random Instruction Dump



9

Listing 6: Lazy merging of directed streams to make RISCV-DV scalable

1void mixin_dir_instr_list(riscv_instr_stream[] dir_list) {
2riscv_instr[] mixed_list;
3uint instr_count = cast(uint) instr_list.length;
4uint mixed_count = instr_count;
5dir_n.length = instr_count;
6this.dir_instr_list = dir_list;
7foreach (size_t dir_idx, dir_instr; dir_instr_list) {
8mixed_count += dir_instr.instr_list.length;
9uint rnd_idx = urandom(0, instr_count);
10uint next_dir = dir_n[rnd_idx];
11if (next_dir == 0) // no directed stream at this location
12dir_n[rnd_idx] = cast(uint) (dir_idx + 1);
13else { // directed stream already at this location -- store as insert_idx
14uint insert_idx = cast(uint) (dir_idx + 1);
15riscv_instr_stream instr = dir_instr_list[next_dir-1];
16while (instr.next_stream != 0) {
17if (rnd_idx % 2 == 0) { // insert at the end or in the beginning
18uint next_idx = instr.next_stream;
19instr.next_stream = insert_idx;
20insert_idx = next_idx;
21}
22instr = dir_instr_list[instr.next_stream-1];
23}
24instr.next_stream = cast(uint) (insert_idx);
25}
26}
27mixed_list.length = mixed_count;
28uint n = 0;
29foreach (i, instr; instr_list) { // create the merged function body
30uint next_dir = dir_n[i];
31while (next_dir != 0) {
32uint next = dir_instr_list[next_dir-1].next_stream;
33foreach (dinstr; dir_instr_list[next_dir-1].instr_list)
34mixed_list[n++] = dinstr;
35next_dir = next;
36}
37mixed_list[n++] = instr;
38}
39instr_list.assimilate(mixed_list);
40}

larger than a hundred thousand. Interestingly, as noted in [35], larger test programs help generate increasingly complex program
flows that are more likely to uncover processor bugs.

An algorithmic refactoring of the code, as outlined in listing 6, brings the algorithmic complexity down to O(n), thus making
the insertion process scale linearly. The improvised merging process does not involve queue insertions. Directed Streams are
now merged with the Initial Randomized Dump in a lazy manner. First, a random number (rnd idx on line 9) is used to mark the
locations where the directed sequences are sought to be injected. No insertion is actualized for now, and the locations marking
the points of injection of the respective directed streams just get enumerated in an array. In case another directed stream has
already been marked for injection at the same location, the information is stored in a linked list structure actualized by the
variable insert_idx embedded in the stream object itself. When the locations have been tabulated for all the injectable
directed streams, a merged instruction dump is created in one go (line 29). On re-profiling after this refactoring, it was found
that the merge process now scaled well and no longer posed a bottleneck for the generation of large test programs.

VIII. A PARALLELIZED INSTRUCTION GENERATOR

A. Changes to Accommodate Parallelization of the RISCV-DV Architecture

Adding parallelism to UVM testbenches does not require too many changes at the architecture level since the object-oriented
paradigm provides the right kind of framework to enable concurrency [16]. Yet, a few changes were required to the RISCV-DV
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architecture to make it compliant with the concurrency semantics of the D Programming Language.

In general global or statically scoped variables, when accessed by multiple threads, prove to be detrimental to the run-time
efficacy of a concurrent software. This happens because of the shared nature of globally/statically scoped variables, whereby
(to avoid race conditions) any access to such variables has to be synchronized with a synchronization lock. It was noticed that
the RISCV-DV source code has a few statically scoped variables in the file riscv instr.sv. These variables serve the purpose of
registration of various RISC-V instructions with the instruction generator.

eUVM RISCV-DV port refactors these variables along with the related functions to a separate class named riscv instr registry
specifically created for the purpose of instruction registry. These changes are summarized in listing 8 which exhibits the eUVM
code for instruction registry. The corresponding code for the instruction registry in SV is outlined in listing 7. An instance of the
riscv instr registry class is then created inside the singleton riscv instr gen config class, thus preserving the singleton nature
of the variables, just as the SV version which declares these variables as static.

The RISCV-DV generator involves large instruction sequences. Consequently, the best approach towards its parallelization
works out to be a parallelized fork. Just like SV, in eUVM too the most fundamental unit of testbench execution is a process.
A process may be declared as a task or may get forked from an already executing task by making a call to the eUVM construct
fork. This is where eUVM starts to differ from SV, in as much as eUVM is capable of executing threads on multiple cores.
When a process is forked out in eUVM, it is feasible to delegate the newly forked process to execute on a specified processor
thread.

A parallelized fork (listing 9) is used to mitigate the first bottleneck that pertains to the initial dumping of non-directed
instruction streams that form the backbone of the main function and the sub-programs. Note that the parallelization process
is not effective when the number of transactions (or instructions in the case of RISC-V) to be randomized is small. This is
so because the constraint solvers take more time when invoked for the first time for a given constraint. Subsequently, when
more transactions are constraint-randomized, the solvers take advantage of the already solved constraints and just pick a random
solution from the already solved set. Note that a parallelized testbench instantiates a separate solver for each thread of execution.
Sharing the same solver instance across the different threads would defeat the very purpose of parallelization.

Based on the number of instructions in the dump, a decision is first made whether to invoke parallelization or not. The default
threshold value of 4000 is kept in the par instr threshold configuration object parameter. When the parallelized RISCV-DV
generator encounters a larger number of instructions to randomize, it splits the process into par num threads (defaults to 8)
slices and delegates the randomization of the instructions in each slice to a separate thread.

An avid reader may have noticed the finer details of the fork construct in eUVM. Unlike the SV fork, an eUVM fork returns
a Fork object that can be collected into a list, thus enabling a lot of flexibility in configuring the forks and joining them later
in the code. In particular, the set thread affinity method configures the thread that a particular fork is assigned to execute on.
The ˜ = operator (on line 28) is a shorthand for appending an object to a dynamic array in the D language.

A slightly different approach (listing 10) is taken for parallelization of directed instruction streams. Since there are multiple
groups of directed streams, a separate thread is designated for the randomization of the streams in each of the groups. This

Listing 7: Static variables in SV riscv instr class enable instruc-
tion registry

class riscv_instr extends uvm_object;
// All derived instructions
static bit instr_registry[riscv_instr_name_t];
// Instruction list
static riscv_instr_name_t instr_names[$];
// Categorized instruction list
static riscv_instr_name_t
instr_group[riscv_instr_group_t][$];

static riscv_instr_name_t
instr_category[riscv_instr_category_t][$];

static riscv_instr_name_t basic_instr[$];
static riscv_instr
instr_template[riscv_instr_name_t];

// Privileged CSR filter
static privileged_reg_t exclude_reg[];
static privileged_reg_t include_reg[];

Listing 8: eUVM implements the instruction registry as a
separate class

class riscv_instr_registry: uvm_object {
// All derived instructions
bool[riscv_instr_name_t] instr_registry;
// Instruction list
riscv_instr_name_t[] instr_names;
// Categorized instruction list
riscv_instr_name_t[]
[riscv_instr_group_t] instr_group;

riscv_instr_name_t[]
[riscv_instr_category_t] instr_category;

riscv_instr_name_t[] basic_instr;
riscv_instr[riscv_instr_name_t]

instr_template;
// Privileged CSR filter
privileged_reg_t[] exclude_reg;
privileged_reg_t[] include_reg;
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Listing 9: Parallelizing Randomization of the Initial Instruction Dump

1void gen_instr(bool no_branch = false, bool no_load_store = true,
2bool is_debug_program = false) {
3GC.disable();
4setup_allowed_instr(no_branch, no_load_store);
5assert (instr_list.length != 0);
6if (instr_list.length <= cfg.par_instr_threshold ||
7cfg.par_num_threads == 1) {
8foreach (ref instr; instr_list) {
9randomize_instr(instr, is_debug_program);
10}
11}
12else { // parallelise with cfg.par_num_threads
13Fork[] forks;
14size_t instr_count = instr_list.length;
15size_t instr_grp_length = instr_count / cfg.par_num_threads;
16for (size_t i=0; i!=cfg.par_num_threads; ++i) {
17size_t start_idx = i * instr_grp_length;
18size_t end_idx = (i + 1) * instr_grp_length;
19// last group
20if (i == cfg.par_num_threads - 1) end_idx = instr_count;
21// capture start_idx and end_idx and fork
22Fork new_fork = (size_t start, size_t end) {
23return fork({
24for (size_t i=start; i!=end; ++i) {
25randomize_instr(instr_list[i], is_debug_program);
26}
27});
28} (start_idx, end_idx);
29new_fork.set_thread_affinity(forks.length);
30forks ˜= new_fork;
31}
32foreach (f; forks) f.join();
33}
34// Do not allow branch instruction as the last instruction because
35// there’s no forward branch target
36while (instr_list[$-1].category == riscv_instr_category_t.BRANCH) {
37instr_list.length = instr_list.length - 1;
38if (instr_list.length == 0) break;
39}
40GC.enable();
41}

choice is made for sake of code simplicity. Furthermore, taking note of the fact that for a given group of directed streams, the
constraints pertaining to the streams therein would be identical, this strategy puts less stress on the thread specific constraint
solvers.

IX. GENERIC TESTBENCH OPTIMIZATION TECHNIQUES

A. Use Appropriate Tools to Identify Performance Bottlenecks

This is the most important step in the process of performance optimization. The RISCV-DV constitutes more than fifteen
thousand lines of code. Profiling helped reduce focus to about two hundred lines of code that get executed repeatedly, and are
key to the performance of the generator. In section VI, we already explored uvm trace (a construct in eUVM) that helps in the
formal identification of testbench bottlenecks.

Note that the uvm_trace method enables only a macro level profiling. It is prudent to keep in mind that every invocation
of uvm_trace involves an operating system call to fetch the current clock time. Reckless use of the command may result in
an inordinate blowup of the testbench runtime.

For micro-level profiling the opensource tool gprof comes in handy. Reference [36] contains a detailed exposition of the tool.
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Listing 10: Parallelizing Randomization of the Directed Instruction Streams

1void generate_directed_instr_stream(in int hart, in string label,
2in uint original_instr_cnt, in uint min_insert_cnt,
3in bool kernel_mode, out riscv_instr_stream[] instr_stream) {
4if (cfg.no_directed_instr) return;
5else {
6Fork[] forks;
7uint instr_stream_length = 0;
8uint stream_idx = 0;
9foreach (stream_name, ratio; directed_instr_stream_ratio) {
10uint insert_cnt = original_instr_cnt * ratio / 1000;
11if (insert_cnt <= min_insert_cnt) insert_cnt = min_insert_cnt;
12instr_stream_length += insert_cnt;
13uvm_info(get_full_name(), format("Insert directed instr stream %0s %0d/%0d times",
14stream_name, insert_cnt, original_instr_cnt), UVM_LOW);
15// capture stream_name, ratio, stream_idx and insert_cnt and fork
16Fork new_fork = (string name, uint ratio, uint idx, uint cnt) {
17return fork ({
18generate_directed_instr_stream_idx(hart, label, original_instr_cnt, kernel_mode,
19name, ratio, instr_stream, idx, cnt);
20});
21} (stream_name, ratio, stream_idx, insert_cnt);
22new_fork.set_thread_affinity(forks.length);
23forks ˜= new_fork;
24stream_idx += insert_cnt;
25}
26instr_stream.length = instr_stream_length;
27foreach (f; forks) f.join();
28assert (stream_idx == instr_stream.length);
29instr_stream.shuffle();
30}
31}
32void generate_directed_instr_stream_idx(in int hart, in string label, ....
33// Like the non-parallelized instr stream generator
34// snipped for sake of brevity here ....
35}

B. Skip the UVM Factory

The UVM Factory implements many
advanced object creation features like the
ability to define type and instance overrides.
Under the hood the UVM Factory construct
maintains a complex data structure to implement
these features. A seemingly simple invocation
of <class_name>::type_id::create
method requires matching the given class name
against the names of the classes that have been
registered with the factory. Consequently, the
UVM factory becomes significantly slow when
a large number of types are registered with the
factory.

RISCV-DV implements each instruction in
RISC-V ISA as a separate class. On this account,
hundreds of classes are required to get registered
with the factory and that would make the UVM
factory extremely slow. To accelerate instruction
generation, RISCV-DV implements its own cus-
tom factory as outlined in listing 11.

Listing 11: RISCV-DV Custom Factory

1riscv_instr[riscv_instr_name_t] instr_template;
2riscv_instr_name_t[] instr_names;
3

4bool register(riscv_instr_name_t instr_name,
5string qualified_name) {
6instr_registry[instr_name] = qualified_name;
7return true;
8}
9

10void create_instr_list() {
11foreach (instr_name, instr_class_name;
12instr_registry) {
13riscv_instr instr_inst;
14if (canFind(unsupported_instr, instr_name))
15continue;
16instr_inst = create_instr(instr_name,
17instr_class_name);
18instr_template[instr_name] = instr_inst;
19}
20}



13

Note that the RISCV-DV uses an enumeration riscv_instr_name_t to tag each instruction as a numeral. As a result,
the custom factory hashes the factory objects using the enumeration, thus resulting in much faster matching when an instruction
object is created.

C. Prefer Shallow Copy Over UVM Clone Method

UVM provides a clone method as part of the uvm object utils
macros. The UVM clone method enables some useful features like
deep copy. In many scenarios, we do not need a deep copy and
a shallow copy suffices. RISCV-DV uses the native shallow copy
construct. Listing 12 outlines the low level implementation of the
shallow copy construction in eUVM. On lines 5-7, eUVM uses
object introspection to determine the underlying memory footprint
of the object to be copied. On line 8, the underlying memory slice
is simply copied from the source object to the destination. Note
that such a slice copy operation in the D language results in a
single call to memcopy, which is much more efficient compared
to copying individual elements of the class object that would have
resulted from a call to the uvm utils copy construct.

Listing 12: Shallow Copy Implementation in eUVM

1T shallowCopy(T)(T obj) {
2if (obj is null) return null;
3ClassInfo ci = obj.classinfo;
4Object clone = _d_newclass(ci);
5size_t start =
6Object.classinfo.m_init.length;
7size_t end = ci.m_init.length;
8(cast(void*) clone)[start..end] =
9(cast(void*) obj)[start..end];
10return staticCast!T(clone);
11}

D. Minimize Memory Allocation

Every time a memory chunk (big or small) is allocated, the runtime memory manager possibly takes several micro-seconds to
process the request. Note that memory allocation takes place even in trivial operations like a call to SV $sprintf construct that
returns a formatted string. The RISCV-DV generator invokes $sprintf as part of the post randomize method when randomizing
a RISC-V instruction:

At line 13 (listing 13), a system call to $sformatf is made to transform a 32 bit number imm to its string form. While numbers
are stored directly in memory, strings are arrays of variable size. The function $sformatf has to therefore allocate some memory
in order to return the string to the caller.

While it is not obvious how to avoid such memory allocations in SV, eUVM offers a simple solution. We know that we are
formatting a 32 bit number to a decimal string form. It would take a maximum of 10 characters. On line 12, we declare a fixed
size char array by name imm str buffer. Since the array size is fixed it gets allocated as a part of the riscv instr class object.
Note that performance gets degraded by the number of times memory gets allocated, not as much by the size of the allocation.
With this improvisation, the total amount of allocated memory eventually remains the same since the formatted string has to be
stored at some place, but the count of calls to malloc reduces by half.

The underlying D Language (on top of which eUVM is built) provides two flavors of format function. While the Dlang
function format has the same functionality as $sformatf in SV, an alternate Dlang function sformat allows the user to
specify a scratch memory where the formatted string gets stored and returns the resulting pointer to the character array. A cast
operation is required to convert it to a string type before storing it in the imm str variable.

Listing 13: Trivial Memory Allocation in SV

1class riscv_instr extends uvm_object;
2// snipped
3rand bit [31:0] imm;
4string imm_str;
5// snipped
6// ..
7function void post_randomize();
8extend_imm();
9update_imm_str();
10endfunction : post_randomize
11function void update_imm_str();
12imm_str =
13$sformatf("%0d", $signed(imm));
14endfunction
15endclass

Listing 14: Avoiding Trivial Memory Allocation in eUVM

1class riscv_instr: uvm_object {
2// snipped
3@rand ubvec!32 imm;
4string imm_str;
5// snipped ....
6void post_randomize() {
7extend_imm();
8update_imm_str();
9}
10char[12] _imm_str_buff;
11void update_imm_str() {
12imm_str = cast(string) sformat!("%0d")
13(_imm_str_buff, cast(int) imm);
14}
15}



14

E. Reuse Allocated Memory

When coding a non-reentrant function, dynamic arrays
can be scoped static so that the same dynamic array can
be reused the next time a function is called. However, it is
important to reset the length of the array to zero at the start
of the function. Also, remember to reserve some length for
the array so that it does not free up the memory when its
size is reset.

Listing 15 illustrates the technique as applied to the array
inter_set, which is intentionally declared as static on
line 1, though its contents get reset on line 3.

Listing 15: Reusing static Allocated Array

1static riscv_instr_name_t[] inter_set;
2inter_set.reserve(inter_set.length);
3inter_set.length = 0;
4inter_set˜=setDifference(setIntersection
5(instr_set, include_set, allowed_set),
6disallowed_instr[].sort());
7idx = urandom(0, inter_set.length);
8name = inter_set[idx];

Initially, as the first RISC-V instruction is generated, the inter set array variable gets populated by the list of allowed (and not
disallowed) instructions. As the array grows, it asks for memory to be allocated in order to hold the set of possible instructions.
In the next cycle, however, the array would already have the requisite memory since we have declared it static. Had we declared
the array as automatically scoped (without the static tag), every time we randomize an instruction fresh memory will need to
be allocated again, leading to an avoidable adverse impact on performance.

Note that the keyword static has a different connotation in Dlang as compared to SV and C++. The static keyword in Dlang
makes a variable get scoped as thread local (similar to the keyword thread local in C++). It does not get shared across threads.

F. Minimize Constraint Processing

Whenever feasible, prefer functional/algorithmic processing over constraint solving. Constraint solving is inherently a complex
process. In case a variable can be randomized using a sequential method, that approach should be preferred. In listing 16 we
take a look at how RISCV-DV picks an instruction in a constrained random way.

At the beginning of the randomization process, the RISCV-DV finds out whether it needs to exclude some instructions (the
if condition on line 3). When the disallowed set is empty, a branch is taken that completely avoids constraint processing. The

Listing 16: Picking a Random RISC-V Instruction

1disallowed_instr = {disallowed_instr,
2exclude_instr};
3if (disallowed_instr.size() == 0) begin
4if (include_instr.size() > 0) begin
5idx = $urandom_range(0,
6include_instr.size()-1);
7name = include_instr[idx];
8end
9else if (allowed_instr.size() > 0) begin
10idx = $urandom_range(0,
11allowed_instr.size()-1);
12name = allowed_instr[idx];
13end else begin
14idx = $urandom_range(0,
15instr_names.size()-1);
16name = instr_names[idx];
17end
18end else begin
19std::randomize(name) with {
20name inside {instr_names};
21if (include_instr.size() > 0)
22name inside {include_instr};
23if (allowed_instr.size() > 0)
24name inside {allowed_instr};
25if (disallowed_instr.size() > 0)
26!(name inside {disallowed_instr});
27}
28end

Listing 17: Picking a Random RISC-V Instruction (eUVM)

1else {
2import std.algorithm.sorting: sort;
3import std.algorithm.setops:
4setIntersection, setDifference;
5import std.array: array;
6riscv_instr_name_t[] instr_set =
7instr_names_sorted;
8riscv_instr_name_t[] include_set =
9instr_set;
10riscv_instr_name_t[] allowed_set =
11instr_set;
12if (include_instr.length > 0) {
13include_set = include_instr;
14include_set.sort();
15}
16if (allowed_instr.length > 0) {
17allowed_set = allowed_instr[];
18allowed_set.sort();
19}
20static riscv_instr_name_t[] inter_set;
21inter_set.reserve(inter_set.length);
22inter_set.length = 0;
23inter_set˜=setDifference(setIntersection
24(instr_set, include_set, allowed_set),
25disallowed_instr[].sort());
26idx = urandom(0, inter_set.length);
27name = inter_set[idx];
28}



15

else branch (line 18 in the listing) uses a randomize with constraint block to deal with the more complex scenario that involves
excluding the disallowed instructions.

The eUVM RISCV-DV port avoids constraint processing in the else branch as well (listing 17). For the sake of brevity only
the else branch is outlined here.

The eUVM port takes advantage of set operation algorithms available in the standard D language library. Note that the D
language implements these set processing operations as lazy algorithms, thus avoiding memory allocations altogether.

G. Avoid Array (foreach) Constraints

Avoid randomizing elements of an array in one go. When possible, call the randomize method on each element of the array
separately. Each call to the randomize method processes all the constraints listed in the class. When dealing with a larger set of
constraints, the solver generally does not scale well and needs to put in extra effort.

H. Prefer Structs Over Classes

Prefer struct instances over class objects. This is not always possible, but there are scenarios where sub-objects are required
inside uvm object instances. While a memory for a structure instance gets allocated along with the enclosing class, using a class
instance as a sub-object results in additional runtime overhead at the time of its allocation (call to new).

I. Use a Native (Systems Programming) Language

Because of the proprietary nature of SV simulators, not much has been reported on the performance of SV compared to native
systems programming languages (C/C++/Rust/Go/D). A simple algorithm that calculates the number of primes in a given range
can be used for a basic comparison. Note that performance benchmarking is a complex domain and simple experiments like the
one that follows are only indicative (at best).

The code in listing 18 implements a naive algorithm that counts the number of prime numbers smaller than ten million in
SV. The same algorithm coded in the D language is listed in 19.

On compiling and running both the implementations (D version compiled with ’-O3’ optimization flag), you may find the
SystemVerilog version to be slower by an order of magnitude.

It is not difficult to figure out why algorithms coded in SV execute much slower compared to the code implemented in
native languages. Despite the C-like nomenclature used by SV for its 2-state data types, int, byte etc are not comparable to the
similarly named data types in the native programming languages. Unlike the C int, the SV version of int allows both blocking

Listing 18: Counting Primes in SV

program main();
automatic function
int count_primes(const int count);
int primes[$];
for (int n = 2; n <= count; ++n) begin

bit is_prime = 1;
foreach (primes[i]) begin

if (primes[i] * primes[i] > n) break;
if (n % primes[i] == 0) begin
is_prime = 0;
break;

end
end
if (is_prime) primes.push_back(n);

end
return primes.size();

endfunction: count_primes
initial begin
$display ("Found %d Primes between 0 \

and 10000000", count_primes(10000000));
end

endprogram

Listing 19: Counting Primes in D

import std.stdio;
size_t count_primes(const int count) {

int[] primes;
for (int n = 2; n <= count; ++n) {
bool is_prime = true;
foreach (prime; primes) {
if (prime * prime > n) break;
if (n % prime == 0) {

is_prime = false;
break;

}
}
if (is_prime) primes ˜= n;

}
return primes.length;

}

void main() {
writefln("Found %s Primes between 0" ˜

" and 10000000",
count_primes(10000000));

}
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Listing 20: An Example RISCV-DV Constraint

constraint no_hint_illegal_instr_c {
if (instr_name == C_JR) {
rs1 != ZERO;

}
}

Listing 21: Compile Time Constraint Selection in eUVM

static if (RISCV_INSTR_NAME == C_JR) {
constraint! q{
rs1 != ZERO;

} no_hint_illegal_instr_c;
}

and non-blocking assignments. An int variable in SV also allows another process to wait for a change in its value. On this
account, SV needs to do extra processing when executing integral operations, making it noticeably slower when compared to
systems programming languages.

If we consider functional semantics, the closest to SV int type is the SystemC sc signal<int> type.

A similar reasoning applies to Python [20] which, given its interpreted nature, actually turns out to be much slower than even
SV. The RISCV-DV project has been implemented in eUVM, SV, and Python. While the eUVM version runs the fastest, the
Python version trails the eUVM version by a factor of more than 1000x.

J. When Possible, Avoid Dynamic Casting

Under the hood, a dynamic cast involves a string comparison that has an adverse impact on software performance. When
down-casting an object, there are scenarios where there is a certainty that the cast operation will succeed. For example, every
time an object is cloned, or a call to the uvm utils’ create construct is made, an underlying cast operation comes into effect.
Since the down-casting operator involved in create or the clone operations is never going to fail, these casts can better be
replaced with static casts.

K. Use Compile Time Functional Evaluation to Expedite Constraint Processing

The RISC-V processor has a modular ISA with a vast instruction set of over 1400 instructions (including the unratified
extensions) [37]. The RISCV-DV project tries to group these instructions using various criteria for the sake of adding constraints
to the relevant instructions. For example, a constraint that applies only to the C_JR instruction is shown in listing 20. This code
snippet is taken from the riscv_compressed_instr base class in the RISCV-DV code base.

The problem is that though this constraint is valid for only one instruction, it gets applied to all the compressed instructions
in the RISCV ISA. The constraint solver will have to process the constraint guard for every compressed instruction only to
know that it does not apply to most of the instructions.

Listing 21 outlines an approach taken by eUVM, wherein using D language construct static if, eUVM individualizes
each instruction at compile time so that the solvers get to process only the constraints that are valid for the given instruction.

X. NATIVE GENERATION OF BINARY EXECUTABLE

As illustrated in figure 13, the RISCV-DV generator outputs an assembly program that needs to be compiled and linked before
it can be used for simulation or emulation. The eUVM port, having the benefit of low-level programming constructs, combines
the linker functionality in the generator and directly generates the binary file.

XI. THE MEMORY WALL

A recent trend in the server-end processors is to integrate a large on-chip RAM along with the CPU cores [38]. In addition
to ensuring low-latency access to memory, this technology also reduces power dissipation significantly. As a side-effect of this
technique, the amount of RAM available to the multi-core processors reduces significantly, leading to a phenomenon popularly
known as the Memory Wall [39]. Note that Memory Wall also applies to server-end processors that use external memory due to
limited shared level-3/4 caches [40].

As can be seen in the benchmarking results in section XII, the parallelized eUVM version of RISCV-DV mitigates the Memory
Wall well enough. When we scale the RISCV-DV to multicore parallelism, the incremental usage of RAM is insignificant.

RISCV-DV Generator test.s test.elfLinkerAssembler elf2bin

Memory Layout

test.o test.bin

RISC-V Subsystem
Simulation/Emulation

backdoor
load

SPIKE

Program
Memory

Fig. 13: RISC-V Co-Simulation/Emulation Flow
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Listing 22: Benchmarking Instruction Randomization in RISCV-DV

1void gen_instr(bool no_branch = false, bool no_load_store = true,
2bool is_debug_program = false) {
3GC.disable();
4setup_allowed_instr(no_branch, no_load_store);
5assert (instr_list.length != 0);
6uvm_trace("GEN INSTR", "START", UVM_NONE);
7if (instr_list.length <= cfg.par_instr_threshold ||
8cfg.par_num_threads == 1) {
9foreach (ref instr; instr_list) {
10randomize_instr(instr, is_debug_program);
11}
12}
13else { // parallelise with cfg.par_num_threads
14Fork[] forks;
15size_t instr_count = instr_list.length;
16size_t instr_grp_length = instr_count / cfg.par_num_threads;
17for (size_t i=0; i!=cfg.par_num_threads; ++i) {
18size_t start_idx = i * instr_grp_length;
19size_t end_idx = (i + 1) * instr_grp_length;
20// last group
21if (i == cfg.par_num_threads - 1) end_idx = instr_count;
22// capture start_idx and end_idx and fork
23Fork new_fork = (size_t start, size_t end) {
24return fork({
25for (size_t i=start; i!=end; ++i) {
26randomize_instr(instr_list[i], is_debug_program);
27}
28});
29} (start_idx, end_idx);
30new_fork.set_thread_affinity(forks.length);
31forks ˜= new_fork;
32}
33foreach (f; forks) f.join();
34}
35uvm_trace("GEN INSTR", "END", UVM_NONE);
36// Do not allow branch instruction as the last instruction because
37// there’s no forward branch target
38while (instr_list[$-1].category == riscv_instr_category_t.BRANCH) {
39instr_list.length = instr_list.length - 1;
40if (instr_list.length == 0) break;
41}
42GC.enable();
43}

XII. BENCHMARKING RESULTS

In order to measure multicore efficiency, calls to uvm_trace were introduces around the block of code that randomizes
RISC-V instructions (refer to line number 6 and 35 in the lising 22). The arithmetic only RISCV-DV test was run for an
instruction count of 10 million. The test was compiled with compile and link time optimizations on a 64 core server with
an AMD Epyc 7713 processor. Note that the timing values listed in the following table account only for the time taken for
generation and constrained-randomization of the instructions. The time to format the instructions into ASM mnemonics is not
included since the eUVM version of RISCV-DV can directly create a binary dump.

Table I lists the execution time and memory usage for generating 10 million instructions on a multicore RISCV-DV. Table II
lists the approximate performance gains achieved by the various contributing factors.

XIII. CONCLUSION

With the help of the HPC techniques listed in this paper, we are able to achieve a throughput of around 2.5 million instructions
in a second. While this throughput has been achieved for the simplest RISCV-DV test generation, we are able to achieve more
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TABLE I: Performance Improvements for a 10 million instruction RISCV-DV test
(All timing values in seconds)

Instr Count Thread Count Execution Time Performance RAM Usage
10000000 1 57.86 1.00x 4.9 GB
10000000 2 31.22 1.85x 4.9 GB
10000000 4 18.03 3.21x 5.0 GB
10000000 8 10.35 5.59x 5.0 GB
10000000 16 5.53 10.46x 5.0 GB
10000000 32 4.23 13.68x 5.0 GB

TABLE II: Factors Contributing to RISCV-DV Performance Gain

Performance Contributing Factor Approximate Gain
Multicore Sequence Generation (32 threads) 14x
Constraint Reduction and Optimization 2.5x
Native Data types and Testbench Code (Systems Programming) 2x
Thread Affinity (Sticking OS threads to Physical Cores) 2x
Optimizing Memory Allocation and Reuse 1.5x
Binary Instruction Generation (Skipping Assembler and Linker) > 2x

than a million instr/sec throughput for more complex tests as well. This throughput is in the range of the clock frequency of
any DuT that runs on an emulation platform.

Most of the techniques discussed in this paper can only be implemented in a language that allows low level memory access and
enables multicore parallelism. Currently, only eUVM fits the criteria and is the only library that has a parallelized implementation
of the IEEE 1800.2 UVM standard.

A. It is Opensource, Folks!

The source code and the instructions to compile and test the parallelized eUVM version of RISCV-DV are hosted on GitHub
[41]. The source code of the opensource project eUVM can also be accessed from GitHub [42]. An enterprising reader is invited
to explore it, fork it, and contribute to the fledging opensource verification tooling.
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