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Abstract- Hangs have traditionally evaded the dynamic simulations and cause serious schedule risks for SOCs' time-to-

market. Majority of hangs attributes to deadlocks and livelocks in interacting finite state machines. Modern micro-

architectures use interacting FSMs for modular implementation of complex flows which are vulnerable to synchronization 

issues causing the sub-system to hang. FSM minesweeper is a novel methodology which leverages the exhaustive analysis of 

formal technology to identify all the cases of deadlocks and livelocks in a system of interacting FSMs by using a 

straightforward solution which is eminently scalable to large IPs. 

 

I.   INTRODUCTION 

Traditionally, IP teams have relied upon IP-level dynamic simulations to verify requirements such as absence of 

hang, coherence, security etc. Due to the complexity of feature-rich modern designs, coverage of corner-case scenarios 

in dynamic simulations is predictably low which makes the product schedule vulnerable to the possibility of 

showstopper, late-stage sub-system level bugs escaping the verification process. Hangs are those notorious bugs which 

have historically escaped dynamic simulations and caused panic in the later stages of design signoff. Hangs are mostly 

rooted in control logic of the design which malfunctions in a very specifically timed, highly unlikely sequence of 

events. Formal verification, equivalent to an exhaustive sequence stimuli verification, can help in finding issues in 

these complex timed interactions, thus avoiding late bug escapes. 

 

Major formal verification tools implement model checking [1] for finding bugs which suffers from the exponential 

computational complexity. Thus, proving absence of hangs on RTL implementation of an entire IP is unrealistic. 

Therefore, we focus on the most worrisome subcategory of hangs which attributes to interacting finite state machines 

(FSMs) [2]. 

 

FSM minesweeper is a novel methodology that leverages the exhaustive breadth-first search analysis of formal 

technology to identify all the cases of deadlocks and livelocks in a system of interacting FSMs, uses a straightforward 

solution of mining bugs in a system of interacting FSMs and manages formal complexity barriers effectively. These 

qualities make the methodology scalable to large IPs. Objective of the famous “minesweeper” video game is to clear 

a board containing hidden “mines” or “bombs” without detonating any of them. However, the objective of FSM 

minesweeper is the exact opposite – to expose all the hidden “mines” or “bugs” by detonating them. 

 

Novelty of our methodology lies in the bottom-up strategy as compared to top-down strategy of traditional formal 

verification methodology [3]. Traditional methods demand comprehensive knowledge of “specific” requirements of 

the sub-system to implement an end-to-end forward progress checker. Our methodology relies upon “general” 

axiomatic requirements of an FSM. Therefore, it can be deployed without acquiring detailed design understanding 

before starting the execution. And the nature of counterexamples guide verifiers in acquiring relevant knowledge about 

the design saving extraneous ramp-up effort. 

 

We have applied our methodology in server and client memory sub-systems, and it has yielded results that showcase 

its effectiveness in finding hang-related bugs which are (1) located within individual FSMs, (2) located in glue-logic 

between FSMs and (3) architectural in nature. Currently, our methodology is semi-automated. However, we envision 

complete automation with further investments. 

 

 



II.   METHODOLOGY – FSM MINESWEEPER 

We propose the following stepwise approach to mine hang-related bugs in a sub-system comprising of multiple 

interacting FSMs. 
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Figure 1: FSM Minesweeper Flow Chart 

 

A. Identify design boundary containing interacting FSMs of interest i.e., main Device Under Test DUT 

Since we require only the FSM implementations and the glue logic facilitating interactions between FSMs, therefore 

entire RTL implementation of an IP is irrelevant – targeting entire IP may unnecessarily increase the formal 

complexity. We recommend to identify all the FSMs in the IP (major industrial formal property verification tools are 

capable of listing FSMs in a given design) and pick that module in the design hierarchy which instantiates all the 

FSMs. 

B. Prove absence of deadlock and livelock assertions for each FSM 

Create standalone DUTs – one for each FSM and implement deadlock and livelock assertions for individual states 

of the FSM using liveness [4] properties. Deadlock assertion means that “FSM should be able to transition out of a 

given non-reset state eventually”. Livelock [5] assertion means that “FSM should be able to reach reset state from a 

given non-reset state eventually”. Some industrial formal property verification tools are capable of generating such 

deadlock and livelock assertions automatically. Hence, the process of generating deadlock and livelock assertions can 

be automated. Figure 2 shows an FSM implemented for scheduling transactions and example of deadlock, livelock 

assertions. 
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Figure 2: Issue Queue FSM 

 

Deadlock Assertion Example 
 

(iq_state == ACCEPTED) |-> s_eventually (iq_state != ACCEPTED) 

 

Livelock Assertion Example 
 

(iq_state == ACCEPTED) |-> s_eventually (iq_state == IDLE) 

 

Run deadlock and livelock assertions to find failures/cases where the FSM is either stuck in a particular state or 

stuck in a loop among a set of states. Deadlock assertion failure means that either FSM is waiting for an external 

dependency to be resolved or FSM does not have an exit arc even after all the external dependencies stand resolved. 

Livelock assertion failure means either FSM is relying on a loop-breaker mechanism ensured by sub-system or FSM 

is stuck in an incessant loop. Former cases attributes to fairness assumption(s) to be guaranteed by the sub-system and 

later cases attributes to an RTL bug. Figure 2 shows one such loop between ACCEPTED and PREEMPTED state. 

Once all deadlock and livelock assertions failures are debugged and proven as shown in sub-process 1 in figure 2, we 

get a minimal set of assumptions that the FSM is expecting sub-system to guarantee. Though liveness properties are 

comparatively complex to prove than safety properties, however smaller Cone Of Influence (COI) of individual FSM 

in standalone mode makes convergence achievable. 



C. Prove that sub-system guarantees assumptions made by each FSM 

Previous step of the methodology essentially provides us with a minimal set of rules or requirements in executable 

form (SVAs). We run the assumptions made by each individual FSM as checkers on entire sub-system i.e., our main 

DUT and prove all assumptions in the minimal set obtained from step 2. Though these assumptions are checked on 

relatively larger DUT, the total COI is still much smaller and more manageable than that of the entire sub-system. 
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Figure 3: Sub-processes Flow Chart 

 

Step 2 and 3 of the methodology should be iterated for each FSM to eventually prove the absence of hangs in 

interacting set of FSMs. The entire process explained so far can be visualized as minesweeper game where each click 

on a cell (FSM) uncovers mines (bugs) or exposes more cells (interaction requirements). 
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Figure 4: FSM Minesweeper Example 

 

Figure 4 (a) represents an example of sub-system containing multiple FSMs of which A, B, C, E and F form a set 

of interacting FSMs. Figure 4 (b) depicts how step 2 on FSM F will expose deadlock and livelocks contained inside 

FSM F as well as help make executable requirements of interactions between FSM F and FSM A, B, E and external 

interface. 

 

III.   RESULTS 

We applied the methodology on two representative designs in memory sub-system – (1) Power Management Agent 

(PMA) of a client CPU. (2) Memory Controller (MC) of a server CPU. We have found 4 late stage hangs in PMA and 

5 critical hangs in MC with FSM Minesweeper methodology. 

A. Power Management Agent (PMA) 

PMA integrates all memory sub-system IPs to provide a single modular interface between the memory sub-system 

and the SOC. It handles interactions with memory sub-system IPs (e.g., memory controller, inband ECC, fabric 

interface) for reset and power management with firmware. PMA houses 14 interacting FSMs. We found a bug where 

an FSM becomes unresponsive in case when back-to-back instructions received in short span of time. RTL 

implementation did not take care of overwrite scenario and did not implement a necessary arc from a particular state 

causing a deadlock/hang in memory sub-system. 
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Figure 5: PMA High-level Block Diagram 

 

Example of hang found through sub-process #1 – “FSM #4 deadlocks in CALC state when Power Management 

Unit (PMU) overwrites download message”. Typically, FSM #4 expects download request message from PMU in 

IDLE state. FSM #4 then triggers index calculation and sends an ack message to PMU. FSM #4 uses the ack message 

to transition to next state. Sometimes, PMU can send another download request to overwrite the first download request. 

In such cases, FSM #4 transitions back to CALC state for index calculation and needs to send another ack to PMU to 

proceed. RTL implementation did not take care of overwrite scenario causing a deadlock in FSM #4 and hang in 

memory sub-system. Please refer to figure 6 and 7 for details. 
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Figure 6: State Transition Diagram 

 
 

Buggy RTL Implementation 

 

arc_IDLE_to_CALC = (state == IDLE) & msg_req_rise; 

arc_WAIT_to_CALC = (state == WAIT) & msg_req_rise; 

msg_ack_set = (arc_IDLE_to_CALC); 

 

always_ff @(posedge clk) begin 

   if (msg_ack_clr) msg_ack <= '0; 

   else if (msg_ack_set) msg_ack <= '1; 

end 

 



Failing Deadlock Assertion 
 

(state == CALC) |-> s_eventually (state != CALC) 
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Figure 7: PMA Bug Waveform 

 

Table 1: Overall Deadlock/Livelock Bugs Found in PMA 

 

Bug Category Located within 

individual FSMs 

Located in glue-logic 

between FSMs 

Exists in Architecture of 

FSMs 

No. of Bugs Found 2 1 1 

 

B. Memory Controller (MC) 

Memory controller sub-system implements multiple error flows using interacting FSMs. These FSMs work in 

tandem in various modes for different types of errors. A late-stage architectural hang was found in SOC validation 

where error retry flow created a hang in a particular mode. We applied our methodology to reproduce this architectural 

hang for proof-of-concept (POC). We were not only able to reproduce the bug but also prove the robustness of the 

bug fix. Successful results from the POC were extended to next generation of the MC IP and 4 critical hangs were 

found using our methodology. 
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Figure 7: MC High-level Block Diagram 

 

Example of hang found through sub-process #2 – “A late-stage architectural hang was found in SOC validation 

where error retry FSM (B) and correction FSM became out-of-sync in Persistent Fault Detection (PFD) mode when 

an uncorrectable error is encountered”. When we applied our methodology to root-cause the bug, it was found in 



Correction FSM which decodes the error to be uncorrectable but fails to stop the error retry. This particular functional 

issue in Correction FSM stalls the Error Retry FSM (B) in CORR state indefinitely. 

 

To root-cause this issue, we ran sub-process #1 on Error Retry FSM (B) by implementing deadlock and livelock 

checker on each of its state. At the completion of sub-process #1, we identified a set of fairness assumption required 

by Error Retry FSM (B) to *not* hang. One of the fairness assumptions that emerged from sub-process #1 was “Error 

Retry FSM (B) should receive stop indication within finite duration of receiving start uncorrectable error is 

detected in PFD mode”. 

 

In sub-process #2, we ran the fairness assumptions on main DUT (system of interacting FSMs) as checkers and the 

aforementioned assumption failed for the buggy RTL. The failure scenario is explained in figure 8. Error Retry FSM 

(B) receives the start and stop indication from two different FSMs. Error Retry FSM (B) is kicked-off by Error Retry 

FSM (A) and needs to be stopped by Correction FSM eventually. In most cases, Error Retry FSM (B) is stopped by 

Correction FSM when it moves to IDLE state after correcting the error. However, in case of uncorrectable errors, 

Correction FSM stops the correction as soon as it realizes that the error is uncorrectable. In failing scenario, when 

uncorrectable error is detected in PFD mode, Error Retry FSM (A) kicks-off Error Retry FSM (B), Error Retry FSM 

(B) transitions to CORR state waiting for stop indication. However, due to below RTL implementation of Correction 

FSM, it transitions to IDLE upon detecting an uncorrectable error without sending the stop indication to Error Retry 

FSM (B) – shown in red in figure 8. This causes Error Retry FSM (B) to stay stuck in CORR state even after the 

transaction was completed. 

 
 
Buggy RTL Implementation: 
 
stop_corr = corr_err_pfd_en & // Persistent fault detection enabled 

   ~corr_err_req_uc &         // Do not correct uncorrectable error 

   ~corr_err_skip;            // Skip correction when interrupted 
 
stop_retry_set = corr_fsm_exit_dec & stop_corr 
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Figure 8: Error Retry Flow Description and Bug Details 



Table 2: Overall Deadlock/Livelock Bugs Found in MC 

 

Bug Category Located within 

individual FSMs 

Located in glue-logic 

between FSMs 

Exists in Architecture of 

FSMs 

No. of Bugs Found 2 1 2 

 

IV.   CONCLUSIONS 

Proving the absence of hangs at IP-level is a critical challenge for today’s design and verification teams. The 

problem is not well-addressed by traditional verification methods including end-to-end formal verification. In this 

paper, we have described a novel methodology which addresses a part of the problem effectively by focusing on hangs 

arising in interacting FSMs of a sub-system. 

 

FSM minesweeper is an evolutionary application of formal verification and assume-guarantee technique which can 

be performed at IP-level RTL implementation to improve the quality of individual FSMs, identify issues in glue logic 

and find architectural flaws in the way multiple FSMs interact with each other. We have been seeing promising results 

from the proposed methodology, encouraging us to invest more in automating the methodology to spur wider adoption. 
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