
FSM Minesweeper – Scalable Formal

Verification Methodology for

Detecting Hangs in Interacting FSMs

Anshul Jain, Achutha KiranKumar V M, Harbaksh Gupta, Shashwat Singh

Intel Corporation
{anshul.jain, achutha.kirankumar.v.m, harbaksh.gupta, shashwat.singh}@intel.com

Abstract- Hangs have traditionally evaded the dynamic simulations and cause serious schedule risks for SOCs' time-to-

market. Majority of hangs attributes to deadlocks and livelocks in interacting finite state machines. Modern micro-

architectures use interacting FSMs for modular implementation of complex flows which are vulnerable to synchronization

issues causing the sub-system to hang. FSM minesweeper is a novel methodology which leverages the exhaustive analysis of

formal technology to identify all the cases of deadlocks and livelocks in a system of interacting FSMs by using a

straightforward solution which is eminently scalable to large IPs.

I. INTRODUCTION

Traditionally, IP teams have relied upon IP-level dynamic simulations to verify requirements such as absence of

hang, coherence, security etc. Due to the complexity of feature-rich modern designs, coverage of corner-case scenarios

in dynamic simulations is predictably low which makes the product schedule vulnerable to the possibility of

showstopper, late-stage sub-system level bugs escaping the verification process. Hangs are those notorious bugs which

have historically escaped dynamic simulations and caused panic in the later stages of design signoff. Hangs are mostly

rooted in control logic of the design which malfunctions in a very specifically timed, highly unlikely sequence of

events. Formal verification, equivalent to an exhaustive sequence stimuli verification, can help in finding issues in

these complex timed interactions, thus avoiding late bug escapes.

Major formal verification tools implement model checking [1] for finding bugs which suffers from the exponential

computational complexity. Thus, proving absence of hangs on RTL implementation of an entire IP is unrealistic.

Therefore, we focus on the most worrisome subcategory of hangs which attributes to interacting finite state machines

(FSMs) [2].

FSM minesweeper is a novel methodology that leverages the exhaustive breadth-first search analysis of formal

technology to identify all the cases of deadlocks and livelocks in a system of interacting FSMs, uses a straightforward

solution of mining bugs in a system of interacting FSMs and manages formal complexity barriers effectively. These

qualities make the methodology scalable to large IPs. Objective of the famous “minesweeper” video game is to clear

a board containing hidden “mines” or “bombs” without detonating any of them. However, the objective of FSM

minesweeper is the exact opposite – to expose all the hidden “mines” or “bugs” by detonating them.

Novelty of our methodology lies in the bottom-up strategy as compared to top-down strategy of traditional formal

verification methodology [3]. Traditional methods demand comprehensive knowledge of “specific” requirements of

the sub-system to implement an end-to-end forward progress checker. Our methodology relies upon “general”

axiomatic requirements of an FSM. Therefore, it can be deployed without acquiring detailed design understanding

before starting the execution. And the nature of counterexamples guide verifiers in acquiring relevant knowledge about

the design saving extraneous ramp-up effort.

We have applied our methodology in server and client memory sub-systems, and it has yielded results that showcase

its effectiveness in finding hang-related bugs which are (1) located within individual FSMs, (2) located in glue-logic

between FSMs and (3) architectural in nature. Currently, our methodology is semi-automated. However, we envision

complete automation with further investments.

II. METHODOLOGY – FSM MINESWEEPER

We propose the following stepwise approach to mine hang-related bugs in a sub-system comprising of multiple

interacting FSMs.

Start End

Prove absence
of deadlock and
livelock for an

FSM

Obtain minimal set of
assumptions for the
FSM to *not* hang

Prove that sub-
system

guarantees all
assumptions

All FSMs
Covered

Yes

No

Identify sub-
system boundary

containing all
FSMs

Sub-process #1 Sub-process #2

Figure 1: FSM Minesweeper Flow Chart

A. Identify design boundary containing interacting FSMs of interest i.e., main Device Under Test DUT

Since we require only the FSM implementations and the glue logic facilitating interactions between FSMs, therefore

entire RTL implementation of an IP is irrelevant – targeting entire IP may unnecessarily increase the formal

complexity. We recommend to identify all the FSMs in the IP (major industrial formal property verification tools are

capable of listing FSMs in a given design) and pick that module in the design hierarchy which instantiates all the

FSMs.

B. Prove absence of deadlock and livelock assertions for each FSM

Create standalone DUTs – one for each FSM and implement deadlock and livelock assertions for individual states

of the FSM using liveness [4] properties. Deadlock assertion means that “FSM should be able to transition out of a

given non-reset state eventually”. Livelock [5] assertion means that “FSM should be able to reach reset state from a

given non-reset state eventually”. Some industrial formal property verification tools are capable of generating such

deadlock and livelock assertions automatically. Hence, the process of generating deadlock and livelock assertions can

be automated. Figure 2 shows an FSM implemented for scheduling transactions and example of deadlock, livelock

assertions.

ACCEPTEDQUEUED IDLEISSUED PREEMPTED

Figure 2: Issue Queue FSM

Deadlock Assertion Example

(iq_state == ACCEPTED) |-> s_eventually (iq_state != ACCEPTED)

Livelock Assertion Example

(iq_state == ACCEPTED) |-> s_eventually (iq_state == IDLE)

Run deadlock and livelock assertions to find failures/cases where the FSM is either stuck in a particular state or

stuck in a loop among a set of states. Deadlock assertion failure means that either FSM is waiting for an external

dependency to be resolved or FSM does not have an exit arc even after all the external dependencies stand resolved.

Livelock assertion failure means either FSM is relying on a loop-breaker mechanism ensured by sub-system or FSM

is stuck in an incessant loop. Former cases attributes to fairness assumption(s) to be guaranteed by the sub-system and

later cases attributes to an RTL bug. Figure 2 shows one such loop between ACCEPTED and PREEMPTED state.

Once all deadlock and livelock assertions failures are debugged and proven as shown in sub-process 1 in figure 2, we

get a minimal set of assumptions that the FSM is expecting sub-system to guarantee. Though liveness properties are

comparatively complex to prove than safety properties, however smaller Cone Of Influence (COI) of individual FSM

in standalone mode makes convergence achievable.

C. Prove that sub-system guarantees assumptions made by each FSM

Previous step of the methodology essentially provides us with a minimal set of rules or requirements in executable

form (SVAs). We run the assumptions made by each individual FSM as checkers on entire sub-system i.e., our main

DUT and prove all assumptions in the minimal set obtained from step 2. Though these assumptions are checked on

relatively larger DUT, the total COI is still much smaller and more manageable than that of the entire sub-system.

Run Model Checking Tool
on Standalone DUTs

(individual FSMs)
Counterexample No

Bug contained within
individual FSM;

Implement RTL bug-fix

Yes (false failure)

Identify Illegal Input
Behavior

Formulate Assumption(s)
to be ensured by sub-

system

Create Deadlock &
Livelock Assertions
for an FSM in form

of Liveness
Properties

Yes (true failure)

Obtain minimal
set of assumptions

for the FSM to
not hang

Sub-process #1

Run Model Checking Tool
on Main DUT

(interacting FSMs)
Counterexample No

Bug in glue logic or
architecture;

Implement bug-fix

Yes (false failure)

Identify Illegal Input
Behavior

Formulate Assumptions
to be ensured by entities
outside the sub-system

Yes (true failure)

All mines detonated or
 bugs found

Obtain minimal
set of assumptions

for the FSM to
not hang

Sub-process #2

Figure 3: Sub-processes Flow Chart

Step 2 and 3 of the methodology should be iterated for each FSM to eventually prove the absence of hangs in

interacting set of FSMs. The entire process explained so far can be visualized as minesweeper game where each click

on a cell (FSM) uncovers mines (bugs) or exposes more cells (interaction requirements).

Main DUT

FSM A

FSM D

FSM C

FSM B

FSM E

FSM F

External Interface

External Interface

External Interface

External Interface

Glue
logic

Glue
logic

(a)

Main DUT

FSM A

FSM D

FSM C

FSM B

FSM E

FSM F

External Interface

External Interface

External Interface

External Interface

Glue
logic

Glue
logic

(b)
Figure 4: FSM Minesweeper Example

Figure 4 (a) represents an example of sub-system containing multiple FSMs of which A, B, C, E and F form a set

of interacting FSMs. Figure 4 (b) depicts how step 2 on FSM F will expose deadlock and livelocks contained inside

FSM F as well as help make executable requirements of interactions between FSM F and FSM A, B, E and external

interface.

III. RESULTS

We applied the methodology on two representative designs in memory sub-system – (1) Power Management Agent

(PMA) of a client CPU. (2) Memory Controller (MC) of a server CPU. We have found 4 late stage hangs in PMA and

5 critical hangs in MC with FSM Minesweeper methodology.

A. Power Management Agent (PMA)

PMA integrates all memory sub-system IPs to provide a single modular interface between the memory sub-system

and the SOC. It handles interactions with memory sub-system IPs (e.g., memory controller, inband ECC, fabric

interface) for reset and power management with firmware. PMA houses 14 interacting FSMs. We found a bug where

an FSM becomes unresponsive in case when back-to-back instructions received in short span of time. RTL

implementation did not take care of overwrite scenario and did not implement a necessary arc from a particular state

causing a deadlock/hang in memory sub-system.

 PMA
Message Handler

Control Registers

Router

FSM #3

FSM #4

FSM #5

FSM #6

FSM #7

FSM #8

FSM #9

FSM #10

FSM #12

FSM #13

FSM #14

FSM #11

Power
Manage

ment
Unit

Firmware

FSM #1

FSM #2

SOC

IP #1

IP #2

IP #3

IP #5

IP #6

IP #7

IP #4

IPs

Figure 5: PMA High-level Block Diagram

Example of hang found through sub-process #1 – “FSM #4 deadlocks in CALC state when Power Management

Unit (PMU) overwrites download message”. Typically, FSM #4 expects download request message from PMU in

IDLE state. FSM #4 then triggers index calculation and sends an ack message to PMU. FSM #4 uses the ack message

to transition to next state. Sometimes, PMU can send another download request to overwrite the first download request.

In such cases, FSM #4 transitions back to CALC state for index calculation and needs to send another ack to PMU to

proceed. RTL implementation did not take care of overwrite scenario causing a deadlock in FSM #4 and hang in

memory sub-system. Please refer to figure 6 and 7 for details.

IDLE CALC

DOWNLOAD msg received
from Power Management Unit

WAIT

Sends ACK msg to Power
Management Unit

Power Management Unit sends another
DOWNLOAD msg to overwrite the first

PREP

Other states of the FSM

Figure 6: State Transition Diagram

Buggy RTL Implementation

arc_IDLE_to_CALC = (state == IDLE) & msg_req_rise;

arc_WAIT_to_CALC = (state == WAIT) & msg_req_rise;

msg_ack_set = (arc_IDLE_to_CALC);

always_ff @(posedge clk) begin

 if (msg_ack_clr) msg_ack <= '0;

 else if (msg_ack_set) msg_ack <= '1;

end

Failing Deadlock Assertion

(state == CALC) |-> s_eventually (state != CALC)

Ack set when req
received in IDLE

Ack *not* set when
req received in WAIT

clk

rst

msg_req

arc_IDLE_to_CALC

arc_CALC_to_WAIT

state

msg_ack

msg_ack_set

msg_ack_clr

Figure 7: PMA Bug Waveform

Table 1: Overall Deadlock/Livelock Bugs Found in PMA

Bug Category Located within

individual FSMs

Located in glue-logic

between FSMs

Exists in Architecture of

FSMs

No. of Bugs Found 2 1 1

B. Memory Controller (MC)

Memory controller sub-system implements multiple error flows using interacting FSMs. These FSMs work in

tandem in various modes for different types of errors. A late-stage architectural hang was found in SOC validation

where error retry flow created a hang in a particular mode. We applied our methodology to reproduce this architectural

hang for proof-of-concept (POC). We were not only able to reproduce the bug but also prove the robustness of the

bug fix. Successful results from the POC were extended to next generation of the MC IP and 4 critical hangs were

found using our methodology.

MC

Tracker Scheduler

Datapath

Error Retry
FSM (A)

Error Retry
FSM (B)

Correction
FSM

Link Retry
FSM

Figure 7: MC High-level Block Diagram

Example of hang found through sub-process #2 – “A late-stage architectural hang was found in SOC validation

where error retry FSM (B) and correction FSM became out-of-sync in Persistent Fault Detection (PFD) mode when

an uncorrectable error is encountered”. When we applied our methodology to root-cause the bug, it was found in

Correction FSM which decodes the error to be uncorrectable but fails to stop the error retry. This particular functional

issue in Correction FSM stalls the Error Retry FSM (B) in CORR state indefinitely.

To root-cause this issue, we ran sub-process #1 on Error Retry FSM (B) by implementing deadlock and livelock

checker on each of its state. At the completion of sub-process #1, we identified a set of fairness assumption required

by Error Retry FSM (B) to *not* hang. One of the fairness assumptions that emerged from sub-process #1 was “Error

Retry FSM (B) should receive stop indication within finite duration of receiving start uncorrectable error is

detected in PFD mode”.

In sub-process #2, we ran the fairness assumptions on main DUT (system of interacting FSMs) as checkers and the

aforementioned assumption failed for the buggy RTL. The failure scenario is explained in figure 8. Error Retry FSM

(B) receives the start and stop indication from two different FSMs. Error Retry FSM (B) is kicked-off by Error Retry

FSM (A) and needs to be stopped by Correction FSM eventually. In most cases, Error Retry FSM (B) is stopped by

Correction FSM when it moves to IDLE state after correcting the error. However, in case of uncorrectable errors,

Correction FSM stops the correction as soon as it realizes that the error is uncorrectable. In failing scenario, when

uncorrectable error is detected in PFD mode, Error Retry FSM (A) kicks-off Error Retry FSM (B), Error Retry FSM

(B) transitions to CORR state waiting for stop indication. However, due to below RTL implementation of Correction

FSM, it transitions to IDLE upon detecting an uncorrectable error without sending the stop indication to Error Retry

FSM (B) – shown in red in figure 8. This causes Error Retry FSM (B) to stay stuck in CORR state even after the

transaction was completed.

Buggy RTL Implementation:

stop_corr = corr_err_pfd_en & // Persistent fault detection enabled

 ~corr_err_req_uc & // Do not correct uncorrectable error

 ~corr_err_skip; // Skip correction when interrupted

stop_retry_set = corr_fsm_exit_dec & stop_corr

Error Retry FSM (A) Error Retry FSM (B) Correction FSMRead Datapath

Enable PFD Enable PFD

IDLEStart retry

WAIT

CORR

DONE

IDLE

DEC

IDLE

Read data arrived
with error

Stop retry

RSLT
Stop

corr

Figure 8: Error Retry Flow Description and Bug Details

Table 2: Overall Deadlock/Livelock Bugs Found in MC

Bug Category Located within

individual FSMs

Located in glue-logic

between FSMs

Exists in Architecture of

FSMs

No. of Bugs Found 2 1 2

IV. CONCLUSIONS

Proving the absence of hangs at IP-level is a critical challenge for today’s design and verification teams. The

problem is not well-addressed by traditional verification methods including end-to-end formal verification. In this

paper, we have described a novel methodology which addresses a part of the problem effectively by focusing on hangs

arising in interacting FSMs of a sub-system.

FSM minesweeper is an evolutionary application of formal verification and assume-guarantee technique which can

be performed at IP-level RTL implementation to improve the quality of individual FSMs, identify issues in glue logic

and find architectural flaws in the way multiple FSMs interact with each other. We have been seeing promising results

from the proposed methodology, encouraging us to invest more in automating the methodology to spur wider adoption.

ACKNOWLEDGMENT

We would like to thank PESG, IPG & DDG management for their continued support for developing new

methodologies, Vineesh V S from FVCTO for helping in formal debugs, Harish Mopidevi from Client MC IP team

for supporting us in design understanding, and Server MC IP team for supporting us with design verification collateral

such as failure waves etc.

REFERENCES
[1] Doron A. Peled, Edmund M. Clarke, and Orna Grumberg, Model Checking, Second Edition, 2018

[2] Adnan Aziz , Vigyan Singhal , Robert K. Brayton, Verifying Interacting Finite State Machines : Complexity Issues, 1993
[3] Book, Formal Verification – An Essential Toolkit for VLSI Design, 2015

[4] IEEE Std 1800™-2017, IEEE Standard of SystemVerilog – Unified Hardware Design, Specification, and Verification Language.

[5] Mark Eslinger, Jeremy Levitt, Joe Hupcey, “Deadlock Verification for Dummies – Easy Way of Using SVA & Formal”, DVCon US 2020

