
FSM Minesweeper – Scalable FV Methodology for
Detecting Hangs in Interacting FSMs
Anshul Jain, Achutha KiranKumar V M, Harbaksh

Gupta, Shashwat Singh

Intel Corporation

About Us – FVCTO @Intel

• Formal Verification Central Tech Office (FVCTO)
• 100+ formal verification engineers/experts/pioneers

• Applying FV across Intel Leadership Products throughout design cycle

• Today, we present the application of FV for security verification
• In post-silicon phase (of a server CPU)

• In pre-silicon phase (of a client CPU)

• Formal Property Verification is a powerful
technique for exposing hangs in designs
due to “Interacting FSMs”

• Traditional formal techniques fails to scale
on large designs due to tool capacity issues
and the burden of deep design knowledge

Key Message

Main DUT

FSM A

FSM D

FSM C

FSM B

FSM E

FSM F

External Interface

External Interface

External Interface

External Interface

Glue
logic

Glue
logic

• In this talk, we explain FSM Minesweeper – a straightforward method to
overcome the barriers of capacity and detailed design know-how

Agenda

• Overview

• Problem Statement

• Methodology

• Case Studies

• Conclusions

Overview

• Hangs have traditionally evaded simulations
• Cause panic in late stages of IP/SOC design signoff
• Generally rooted in complex control logic of designs
• Need specifically timed, unlikely sequence of events to be discovered

• FV capable of finding hangs effectively using its breadth-first search

• FSM minesweeper – Efficient FV methodology for catching hangs
• Focus on identifying all deadlocks & livelocks in a system of interacting FSMs

Problem Statement

• Modern SOCs & IPs are getting increasingly complex
• More features → Higher complexity

• Corner-case coverage in simulations is predictably low
• Especially in case of interacting FSMs

• Deep sequence of events required to warm-up all the states of FSMs
• Hard to reach a cross-combination of FSM states which is buggy

• Traditional FV is incapable of solving this problem
• Impractical to apply FV on entire IP
• Capacity issues and convergence challenges are evident

FSM Minesweeper – Overall Process

• FSM Minesweeper is a novel & straightforward solution for mining
bugs in system of interacting FSMs

• Eminently scalable to large IPs and capable of managing formal
complexity barriers using the process explained below

Start End

Prove absence
of deadlock and
livelock for an

FSM

Obtain minimal set of
assumptions for the
FSM to *not* hang

Prove that sub-
system

guarantees all
assumptions

All FSMs
Covered

Yes

No

Identify sub-
system boundary

containing all
FSMs

Sub-process #1 Sub-process #2

Step A

Identify design boundary containing interacting FSMs i.e., DUT

Require FSMs and glue logic facilitating interaction b/w FSMs

Entire RTL implementation is irrelevant (unnecessary complexity)

Identify all the FSMs of your design (major industrial tools capable)

Pick the module in design hierarchy instantiating all FSMs

Black-box modules known to be independent of FSMs

Step B

Prove absence of deadlock & livelock for individual FSMs

Run Model Checking Tool
on Standalone DUTs

(individual FSMs)
Counterexample No

Bug contained within
individual FSM;

Implement RTL bug-fix

Yes (false failure)

Identify Illegal Input
Behavior

Formulate Assumption(s)
to be ensured by sub-

system

Create Deadlock &
Livelock Assertions
for an FSM in form

of Liveness
Properties

Yes (true failure)

Obtain minimal
set of assumptions

for the FSM to
not hang

Sub-process #1

Step C

Prove that assumptions made by individual FSM is guaranteed by DUT

Run Model Checking Tool
on Main DUT

(interacting FSMs)
Counterexample No

Bug in glue logic or
architecture;

Implement bug-fix

Yes (false failure)

Identify Illegal Input
Behavior

Formulate Assumptions
to be ensured by entities
outside the sub-system

Yes (true failure)

All mines detonated or
 bugs found

Obtain minimal
set of assumptions

for the FSM to
not hang

Sub-process #2

Case Studies

Case Study 1: Client CPU Memory Subsystem

• Memory Subsystem contains
PMA (Power Management Agent)

• PMA integrates multiple IPs (like
memory controller, inband ECC,
fabric interface)

• PMA handles interactions
between IPs for reset and power
management

• PMA houses 14 interacting FSMs

 PMA
Message Handler

Control Registers

Router

FSM #3

FSM #4

FSM #5

FSM #6

FSM #7

FSM #8

FSM #9

FSM #10

FSM #12

FSM #13

FSM #14

FSM #11

Power
Manage

ment
Unit

Firmware

FSM #1

FSM #2

SOC

IP #1

IP #2

IP #3

IP #5

IP #6

IP #7

IP #4

IPs

Case Study 1: PMA Hang

Buggy RTL Implementation

arc_IDLE_to_CALC = (state == IDLE) & msg_req_rise;

arc_WAIT_to_CALC = (state == WAIT) & msg_req_rise;

msg_ack_set = (arc_IDLE_to_CALC);

always_ff @(posedge clk) begin

if (msg_ack_clr) msg_ack <= '0;

else if (msg_ack_set) msg_ack <= '1;

end

IDLE CALC

DOWNLOAD msg received
from Power Management Unit

WAIT

Sends ACK msg to Power
Management Unit

Power Management Unit sends another
DOWNLOAD msg to overwrite the first

PREP

Other states of the FSM

Failing Deadlock Assertion

(state == CALC) |-> s_eventually (state != CALC)

Ack set when req
received in IDLE

Ack *not* set when
req received in WAIT

clk

rst

msg_req

arc_IDLE_to_CALC

arc_CALC_to_WAIT

state

msg_ack

msg_ack_set

msg_ack_clr

Case Study 1: PMA Results

2 1 1 4

Bugs in Individual FSM Bug in glue logic b/w FSMs Bug in architecture of FSMs Bugs

Case Study 2: Server CPU Memory Controller

• MC contains 4 interacting FSMs for implementing multiple error flows

• These FSMs work in tandem in various modes for correcting different
types of errors

MC

Tracker Scheduler

Datapath

Error Retry
FSM (A)

Error Retry
FSM (B)

Correction
FSM

Link Retry
FSM

Case Study 2: MC Hang

• Architectural hang found in DV
• Error retry FSM (B) and correction FSM

went out-of-sync in persistent fault
detection (PFD) mode when an
uncorrectable error is encountered

• FSM Minesweeper reproduced the
architectural hang
• Successfully completed proof-of-concept

• Proved the robustness of the bug fix

Error Retry FSM (A) Error Retry FSM (B) Correction FSMRead Datapath

Enable PFD Enable PFD

IDLEStart retry

WAIT

CORR

DONE

IDLE

DEC

IDLE

Read data arrived
with error

Stop retry

RSLT
Stop

corr

Buggy RTL Implementation:

stop_corr = corr_err_pfd_en & // Persistent fault detection enabled

~corr_err_req_uc & // Do not correct uncorrectable error

~corr_err_skip; // Skip correction when interrupted

stop_retry_set = corr_fsm_exit_dec & stop_corr

Case Study 1: MC Results

2 1 2 5

Bugs in Individual FSM Bug in glue logic b/w FSMs Bug in architecture of FSMs Bugs

Conclusions

• Proving absence of hangs at IP-level is critical for today’s DV teams

• Hangs are not well-addressed by traditional verification methods
including end-to-end FV

• FSM minesweeper is a targeted application of FV
• Applicable early on at IP-level RTL to guarantee individual FSM stability

• Identify bugs in glue logic and

• Find architectural flaws in FSMs interactions

• FSM Minesweeper is partly automated – moving to full automation
for wider adoption

Questions?
Thank you!

