(2023

DESIGN AND VERIFICATION™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

FSM Minesweeper — Scalable FV Methodology for
Detecting Hangs in Interacting FSMs

Anshul Jain, Achutha KiranKumar V M, Harbaksh
Gupta, Shashwat Singh

Intel Corporation

About Us — FVCTO @Intel

* Formal Verification Central Tech Office (FVCTO)

* 100+ formal verification engineers/experts/pioneers
* Applying FV across Intel Leadership Products throughout design cycle

* Today, we present the application of FV for security verification
* In post-silicon phase (of a server CPU)
* In pre-silicon phase (of a client CPU)

()

SYSTEMS INITIATIVE

Key Message

* Formal Property Verification is a powerful
technique for exposing hangs in designs

due tO lllnteracting FSMSH nnnnnn I Interface @) —1 é»%@ > @) External Interface

logic logic

* Traditional formal techniques fails to scale e @;ﬁj @ Lg@)

on large designs due to tool capacity issues
and the burden of deep design knowledge) ’

* In this talk, we explain FSM Minesweeper — a straightforward method to
overcome the barriers of capacity and detailed design know-how

()

SYSTEMS INITIATIVE

Agenda

* Overview

* Problem Statement
* Methodology

e Case Studies

* Conclusions

- R h 2023
acce/lera | '] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

Overview

* Hangs have traditionally evaded simulations
» Cause panic in late stages of IP/SOC design signoff
* Generally rooted in complex control logic of designs
* Need specifically timed, unlikely sequence of events to be discovered

* FV capable of finding hangs effectively using its breadth-first search

* FSM minesweeper — Efficient FV methodology for catching hangs
* Focus on identifying all deadlocks & livelocks in a system of interacting FSMs

()

SYSTEMS INITIATIVE

Problem Statement

Modern SOCs & IPs are getting increasingly complex
* More features = Higher complexity

Corner-case coverage in simulations is predictably low
* Especially in case of interacting FSMs

Deep sequence of events required to warm-up all the states of FSMs
* Hard to reach a cross-combination of FSM states which is buggy

Traditional FV is incapable of solving this problem
* Impractical to apply FV on entire IP
* Capacity issues and convergence challenges are evident

- R R 2023
acce/lera | .] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

FSM Minesweeper — Overall Process

* FSM Minesweeper is a novel & straightforward solution for mining
bugs in system of interacting FSMs

* Eminently scalable to large IPs and capable of managing formal
complexity barriers using the process explained below

| Ao

|dentify sub- Prove absence Obtain minimal set of Prove that sub-
system boundary of deadlock and assumptions for the system All FSMs
: _>
containing all livelock for an FSM to *not* hang guarantees all Covered Yes End
FSMs FSM assumptions
Sub-process #1 Sub-process #2

- R N 2023
accellera ! i i . BGNVANDVER]_ECATION

e ' ' ' | UNITED STATES

Step A

ldentify design boundary containing interacting FSMs i.e., DUT

Require FSMs and glue logic facilitating interaction b/w FSMs

Entire RTL implementation is irrelevant (unnecessary complexity)

Identify all the FSMs of your design (major industrial tools capable)

Pick the module in design hierarchy instantiating all FSMs

Black-box modules known to be independent of FSMs

- R ' 2023
accellera |] *) DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

Step B

Prove absence of deadlock & livelock for individual FSMs

Create Deadlock &

Livelock Assertions

for an FSM in form
of Liveness
Properties

Formulate Assumption(s)

system

A 4
Run Model Checking Tool
on Standalone DUTs

A 4

accellera)

SYSTEMS INITIATIVE

(individual FSMs)
A

Bug contained within
individual FSM; <

to be ensured by sub- [«

Identify lllegal Input
Behavior

?

Yes (false failure)

Counterexample

Yes (true failure)

Implement RTL bug-fix

Sub-process #1

Obtain minimal
set of assumptions
for the FSM to
not hang

O

2023

DESIGN AND VERIEICATION™

DV

CONFERENCE AND EXHIBITION

Step C

Prove that assumptions made by individual FSM is guaranteed by DUT

Formulate Assumptions

Identify Illegal Input

to be ensured by entities [«

outside the sub-system

Obtain minimal
set of assumptions
for the FSM to
not hang

A 4

Run Model Checking Tool
on Main DUT
(interacting FSMs)

O

accellera)

SYSTEMS INITIATIVE

A

Bugin glue logic or

Behavior

?

Yes (false failure)

Counterexample N

Yes (true failure)

architecture; <

Implement bug-fix

Sub-process #2

All “mines” detonated or
“bugs” found

2023

DESIGN AND VERIEICATION™

DV

CONFERENCE AND EXHIBITION

(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Case Studies

SYSTEMS INITIATIVE

Case Study 1: Client CPU Memory Subsystem

 Memory Subsystem contains
PMA (Power Management Agent)

Firmware

* PMA integrates multiple IPs (like
memory controller, inband ECC,
fabric interface)

c3§g

» Control Registers

~
»(Router

IPs

»> IP#1

=]
3. o
.-o-,?,orgg

* PMA handles interactions
between IPs for reset and power
management

* PMA houses 14 interacting FSMs

()

SYSTEMS INITIATIVE

> IP #2
w > IP #3

IP #4

/PMA
[—v Message Handler |«
FSM #3 < (] FSM #8
I FSM #9
FSM #1 < > FSM #4 [
r > FSM #10
> FSM #5 4> FSM#11
L > FSM #12
FSM #2 > FSM #6 <<
— FSM #13
FSM #7 A Esm#14s e

»> IP #5

»> IP #6

> IP #7

2023

DESIGN AND VERIEICATION™

Case Study 1: PMA Hang

DOWNLOAD msg received Sends ACK msg to Power
from Power Management Unit Management Unit
"""""" > Failing Deadlock Assertion
(state == CALC) |-> s _eventually (state != CALC)
Other states of the FSM
Power Management Unit sends another
DOWNLOAD msg to overwrite the first
I Ack set when req | | Ack *not* set when '
i received in IDLE i i req received in WAIT i Buggy RTL Implementation
ok | | i | i
rst /R i i arc_IDLE to CALC = (state == IDLE) & msg req rise;
msg_req | AR i R i arc WAIT to CALC = (state == WAIT) & msg req rise;
arc_IDLE_to_CALC : / \ i i i msg_ack_set = (arc_IDLE to_CALC);
arc_CALC_to_WAIT | : | [\ :
state A IDLE! X : CALC) WAIT! X CALG always_ff @(posedge clk) begin
msg_ack | / i \ i i if (msg_ack clr) msg_ack <= '0;
msg_ack_set A | i : else if (msg_ack set) msg_ack <= 'l;
msg_ack_clr i i / \ : i end

- E 2023
acce/lera ! i i . EGNVANDVER]_ECATION

CONFERENCE AND EXHIBITION

Case Study 1: PMA Results

OLOLIOLIO

Bugs in Individual FSM Bug in glue logic b/w FSMs Bug in architecture of FSMs Bugs

accellery -

SYSTEMS INITIATIVE

Case Study 2: Server CPU Memory Controller

* MC contains 4 interacting FSMs for implementing multiple error flows

* These FSMs work in tandem in various modes for correcting different
types of errors

s N
MC
Tracker Scheduler
Error Retry .| ErrorRetry
FSM (A) FSM (B)
7'y 7'y
Datapath il
Link Retry |, .| Correction
FSM FSM
N\ J

- R R 2023
acce/lera | .] *) : DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

. [ReadDatapath | [ErrorRetry FSM(A) | [ErrorRetry FSM (B) | [Correction FSM |
Case Stuady 2: MC Hang ES—. e

* Architectural hang found in DV

* Error retry FSM (B) and correction FSM
went out-of-sync in persistent fault
detection (PFD) mode when an
uncorrectable error is encountered

)_Read data arrived
with error

M)

* FSM Minesweeper reproduced the
architectural hang
» Successfully completed proof-of-concept
* Proved the robustness of the bug fix DI) rin coreenion s setoreupees

stop_retry set = corr_fsm exit_dec & stop_corr

- R R 2023
acce/lera | .] *) : DESIGN AND VERIEICATION

Buggy RTL Implementation:

stop corr = corr err pfd en & // Persistent fault detection enabled

SYSTEMS INITIATIVE

Case Study 1: MC Results

OLOLIOLO

Bugs in Individual FSM Bug in glue logic b/w FSMs Bug in architecture of FSMs Bugs

accellery -

SYSTEMS INITIATIVE

Conclusions

* Proving absence of hangs at IP-level is critical for today’s DV teams

* Hangs are not well-addressed by traditional verification methods
including end-to-end FV

* FSM minesweeper is a targeted application of FV
* Applicable early on at IP-level RTL to guarantee individual FSM stability

* Identify bugs in glue logic and
* Find architectural flaws in FSMs interactions

* FSM Minesweeper is partly automated — moving to full automation
for wider adoption

()

SYSTEMS INITIATIVE

(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

Questions?

Thank you!

SYSTEMS INITIATIVE

