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Abstract - In this paper we present a word-level RTL rewriting framework based on equality saturation which facilitates 

exploration of equivalent designs. By applying rewrites to a single data structure containing the given specification and 

implementation, we can automatically bridge the gap between the two designs. In the case where the given designs are 

equivalent, the framework can be leveraged to automatically decompose the proof, greatly simplifying the equivalence 

checking problem. If there is a bug in the implementation, the framework can be used to automatically propose a minimal 

fix, without substantially modifying the optimized implementation. Our experiments have demonstrated valuable results, 

converting inconclusive equivalence checking problems to conclusive ones, and speeding up the run-time of converging 

cases by up to 6x. For cases when a bug is identified in the implementation, the framework produces a variant of the 

design containing a candidate fix. 

 

I.   INTRODUCTION 

The performance and correctness of arithmetic datapath circuits like adders and multipliers are particularly 

important. Unfortunately, these two requirements are often in conflict. Designers optimizing to improve power, 

performance and area (PPA) resort to increasingly complex implementations, making the verification ever more 

difficult. Moreover, due to the size of the input space, exhaustive simulation is infeasible and Formal Verification 

(FV) is the only option to prove the correctness of these designs. 

One of the most successful FV approaches to verify datapath circuit designs is based on Transaction Equivalence 

Checking (EC), where the design under test is proven to be equivalent to a golden reference design. For many simple 

designs, EC often converges out of the box, thanks to the commercial tools developed by the EDA companies. One of 

the solver components of these tools is a rewrite engine. In [1], for example, the application of rewrites is driven 

mostly by heuristics which can fail to prove the objective.  

In this work, we present an RTL rewriting framework that provides an orchestration layer on top of a formal 

equivalence checking tool. In this framework, the rewrites are close to the user, operating directly on the RTL rather 

than relying (only) on the solvers’ API, allowing us to tailor our high-level rewriting rules according to the problem 

we are tackling. Based on this work, we have developed two applications.  

- Roverify is a tool that can assist equivalence proof convergence by finding a sequence of rewrites that can 

close the gap, decomposing the equivalence checking problem into a sequence of simpler checks.  

- Roverifix is a tool that takes a specification and a buggy implementation and automatically generates a fix, 

whilst maintaining the implementation’s optimizations.  

The first part of the paper summarizes what we presented in [2], including the Roverify results, while the Roverifix 

application is completely new. 

II.   BACKGROUND 

A. Equivalence Checking 

One of the most successful approaches to verify datapath components is based on Equivalence Checking (EC), a 

FV methodology which compares the design under test (implementation) against a golden reference model 

(specification). Implementation and specification can have difference latencies, and the comparison is performed on 

a generic transaction, a computation which takes some input values and produces output results, which might have 

different length in each of the two designs. The output of the comparison can be pass, when a property is proven, fail, 

when the property is not true (a counterexample is generated), or inconclusive, when the tool does not manage to 

either prove or disprove a property.  

A trusted reference is fundamental for EC. One standard verification flow used in the semiconductor industry is the 

following: starting from a component specification, a developer writes a high-level reference implementation (in C++ 

or in “vanilla” RTL) without any interaction with the designer who writes the RTL implementation, providing diversity 

and independence between the two, which are then formally tested for equivalence. Another common option is to use 

a trusted version of the same design in RTL as reference, usually a version from previous projects or based on a third-

party library. This is usually described as C2RTL, RTL2RTL or C2C EC, depending on the language used to write 

implementation and specification. 
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In real-life, inconclusive EC results are very common and they require advanced techniques to achieve full 

convergence. This is often a manual task which can be very time consuming, as it is necessary to understand the 

differences between the implementation and specification. When the differences between the two designs are 

identified, one common approach is to introduce intermediate models and prove equivalence between those and the 

original designs, as shown in Figure 1. If all the intermediate equivalence steps are proven, the equivalence between 

specification and implementation holds. The validity of the waterfall can be proven by formulating an assume 

guarantee lemma, which proves the equivalence of the specification and implementation, assuming each intermediate 

equivalence holds. The approach we describe here automatically generates these waterfalls, simplifying the task for 

FV engineers. 

 

 
Figure 1: Overview of the waterfall approach used by FV engineers. The dashed line between 𝒔𝒑𝒆𝒄 and 𝒊𝒎𝒑𝒍 represents an inconclusive 

verification. Full equivalence is achieved introducing 𝒏 intermediate designs 𝒘𝒊 and proving the equivalences of all the pairs 
(𝒔𝒑𝒆𝒄,𝒘𝟏), (𝒘𝟏, 𝒘𝟐),… , (𝒘𝒏, 𝒊𝒎𝒑𝒍). 

 

One of the key motivations for this work derives from an overview of the technology behind industry leading tools. 

In [1], the tool orchestrates a suite of techniques and solvers to prove the equivalence of input designs. One of these 

techniques is a set of rewrite engines. The authors state that the rewrite engines are driven by heuristics. Heuristic 

driven search is often brittle and may not explore the required space. The techniques presented in Section III describe 

a rewrite orchestration approach that does not suffer from these limitations. Here we solely focus on EC, but the 

rewriting techniques described may be equally applicable to formal property verification of datapath properties.  
 

B. E-graphs 

E-graphs cluster equivalent expressions into e(quivalence)-classes, enabling a compact representation of alternative 

but functionally identical implementations. In the e-graph, nodes represent variables, constants or operators that point 

to children e-classes. This captures the intuition that we may choose how to implement a given sub-expression at any 

point in the design. Due to these nested choices, an e-graph can represent exponentially many implementations in the 

number of nodes. 

An e-graph is grown via constructive application of local equivalence preserving rewrites, 𝑙 → 𝑟, where the right-

hand side of the rewrite is added to the e-class containing 𝑙, without removing 𝑙 as would be done in a traditional 

rewrite engine. As a result, the e-graph avoids the phase-ordering problem, where the order of application impacts the 

results. This approach to growing an e-graph is known as equality saturation [4]. A simple e-graph rewriting example 

is shown in Figure 2, where the dashed boxes represent e-class boundaries, and the arrows connect nodes to their child 

e-classes. The e-graph data structure has been used in the formal methods community for many years [5] and can be 

found in modern SMT solvers such as Z3 [6]. We build on the extensible egg e-graph library [4] to represent datapath 

circuit designs in RTL and take advantage of the e-graphs' ability to explore equivalent designs efficiently. 

 



 
Figure 2: Simple e-graph rewriting over the integers. The dashed boxes represent e-classes of expressions, where we have highlighted the 

modified e-class in red at each stage. Green nodes represent newly added nodes. 

 

III.   METHODOLOGY 

In this section we will first introduce the core e-graph rewriting and analysis technology, implemented in Rust, that 

provides the foundations for the Roverify verification assistant and Roverifix bug fixing tool. We will then describe 

how we modify the e-graph initialization and extraction process to build a custom tool for each application. The current 

implementation of the framework handles only System Verilog, so we will assume that all the EC problems discussed 

below are RTL2RTL comparisons. Sections III and IV summarize work initially presented at the 23rd Conference on 

Formal Methods in Computer Aided Design [2]. Section V builds upon this framework with a novel approach to 

determining a minimal bug fix via RTL rewriting. 

A method to construct an e-graph representation of RTL was described in [3], encoding all signal bitwidth and 

signage definitions. We use a nested S-expression intermediate language called VeriLang, as in Common Lisp:  
term::=(operator [term] [term] … [term]) 

 

For example, the unsigned multiplication of two 8-bit inputs a and b, stored in a 16-bit result is expressed as: 
 

(* 16 unsigned 8 unsigned a 8 unsigned b) 

 

Based on this intermediate language the e-graph can represent the functional behavior of combinational RTL 

designs. We process input System Verilog using the open-source Slang parser [9], combined with a custom translation 

to the intermediate language. We parse both RTL designs and generate expressions, S and I, in the intermediate 

language, for the specification and implementation respectively. We pass the VeriLang expressions to egg [4], which 

initializes an e-graph containing a single node per e-class. The e-graph initialization shall differ for each application, 

so we defer additional discussion to Sections IV and V. An e-graph containing two designs is shown in Figure 3. 

 

Figure 3: Initial e-graph representing a specification (blue) and implementation (red). Shared nodes are colored green. Edge labels denote 

bitwidths. All e-classes (dashed boxes) initially contain a single node. 



 

Rewrites are the way in which the e-graph adds new equivalent designs. In [3] we defined a set of bitwidth dependent 

RTL rewrites for area optimization. The verification rewrite set includes the optimization capabilities but adds 

additional verification specific rewrites to essentially reverse optimizations. 

Table 1 gives examples of the verification rewrites which are guided by our experience using commercial EC tools. 

These rewrites are hard to consider as optimizations. The space of “unoptimizations” is not well defined, so rewrite 

selection is non-obvious, and mostly driven by experience and test cases. The intention is that users should be able to 

easily add additional rewrites that are applicable to their designs. 

To maximize rewrite application, we ensure that the left-hand side of a rewrite matches any possible type 

combinations. We then filter these candidates to valid rewriting opportunities via conditional rewriting. The conditions 

are necessary and sufficient as a function of the rewrite parameters. The sufficiency of the condition ensures that only 

valid, equivalence preserving, rewrites are applied. The necessity of the condition guarantees that no rewriting 

opportunities are missed. Missed rewriting opportunities lead to brittleness and over-dependence on metrics which 

can be the difference between a proven equivalence check and an inconclusive result.  
 

Table 1: An example set of bitwidth dependent datapath verification rewrites. All rewrites are conditionally applied to ensure correctness. 

Bitwidth and signage information of operators and operands is omitted here for concision. 

Name Left-Hand Side Right-Hand Side 

Unmerge Left Shift 𝑎 ≪ (𝑏 + 𝑐) (𝑎 ≪ 𝑏) ≪ 𝑐 

Mult Left Shift 𝑎 × (𝑏 ≪ 𝑐) (𝑎 × 𝑏) ≪ 𝑐 

Shift to Mult 𝑎 ≪ 𝑐𝑜𝑛𝑠𝑡 𝑎 × 2𝑐𝑜𝑛𝑠𝑡 
Mult to Add 𝑎 × 2 𝑎 + 𝑎 

 

Bitwidth definitions can impact the functional behavior of RTL, for example the addition of two 8-bit values stored 

in an 8-bit and a 9-bit result differ in general but may be equivalent in a particular context. To reduce all signals to 

their minimal bitwidth we use interval analysis and reduction rewrites (described in [7]), taking advantage of egg's e-

class analysis feature. Some commercial ECs also utilize a form of interval analysis [1], but e-graph analyses benefit 

from more precise abstractions [8].  

We have described the underlying framework comprised of an intermediate language, front and back ends for 

translation to and from System Verilog and a set of rewrites and analyses. On top of this framework, we develop a 

pair of applications, Roverify and Roverifix, that differ in how we initialize the e-graph and how we extract designs 

from it. In both cases we apply rewrites to the e-graph, adding new nodes to the e-graph and growing the e-classes. 

We vary the number of e-graph rewriting iterations to control the e-graph growth throughout this work. Constructive 

rewrite application adds the overhead of maintaining many equivalent representations of the two designs in the e-

graph, but greatly simplifies the problem of determining a correct rewrite application order. 

 

IV.   ROVERIFY 

The first problem we solve, is the following. Given two Verilog designs, a Specification (Spec), and an 

Implementation (Impl) that we believe to be equivalent. Generate a set of hints to assist the EC tool in proof 

convergence. Figure 4 describes the overall flow of Roverify. Both the Spec and Impl are translated to VeriLang (𝑆 

and 𝐼 respectively) and passed to egg [4] which initializes an e-graph containing both designs. An example of the 

initialized e-graph is shown in Figure 3. Roverify then applies the rewrites and analysis as described above, growing 

the e-graph. The objective is to apply sequences of rewrites to discover equivalent intermediate signals in the e-graph. 

Intuitively we apply rewrites to bridge the gap between the two designs. The e-graph rewriting progress is shown in 

Figure 5. 

Once Roverify halts rewriting, it determines whether it was able to discover any shared intermediate signals between 

designs equivalent to the Spec and designs equivalent to the Impl. From the rewritten e-graph, Roverify extracts two 

designs, 𝑆∗ ≅ 𝑆 and 𝐼∗ ≅ 𝐼, such that 𝑆∗ and 𝐼∗ share the maximal number of intermediate signals. Roverify then 

generates a new equivalence checking problem, converting 𝑆∗ and 𝐼∗ to Verilog, which is passed to the EC tool. This 

new problem should be simpler to solve as the two designs in question share more common intermediate signals. To 

guarantee that 𝑆∗ and 𝐼∗ are indeed equivalent to 𝑆 and 𝐼, respectively, Roverify traces the rewrite sequences from 𝑆 

to 𝑆∗ and 𝐼 to 𝐼∗, as shown in Figure 4. Each rewrite step is checked using the EC tool, generating Verilog before and 

after the rewrite and checking the results. These rewrites are small transformations, which are generally trivial for the 

EC tool to prove.  

If Roverify can find a complete sequence of rewrites between the two designs, then the root e-classes of the Spec 

and Impl will merge, such that all nodes become “shared”, as in Figure 5. If this scenario is reached, rewriting halts 

and Roverify extracts identical 𝑆∗ and 𝐼∗, making this equivalence check trivial. 



 

 

Figure 4: Flow diagram describing the automated equivalence checking assistant Roverify. Lighter green nodes denote designs known to be 

equivalent to the specification, darker green nodes denote designs known to be equivalent to the implementation. 

 

 

 

 

Figure 5. Stages of e-graph growth starting from the initial e-graph in Figure 3. 

V.   ROVERIFIX 

In contrast to Roverify, which assists existing tools with proof convergence. Roverifix goes beyond existing tools 

and can automatically provide bug fixes for broken implementations. More precisely, given a Spec and Impl that are 

proven not equivalent, find the minimal fix or fixes to the implementation such that the two designs are equal. We 

target a minimal fix because an implementation typically contains optimizations that it is desirable for the fixed design 

to retain. This is similar to the intent behind corrections applied for an engineering change order (ECO).  

An important motivation for this tool is that understanding how to fix a datapath component could be non-trivial, 

even when a counterexample is available. Verilog and System Verilog have some interesting subtleties which might 



seems confusing at first sight, as shown in Figure 6, the result of very simple operations is not what many engineers 

would guess [10], hence fixing the implementation might take longer than expected. 

 

 
Figure 6: Examples of Verilog operators gotchas [10]. 

 

Another very common problem is “datapath leakage”, that occurs when an internal operand is not wide enough to 

store the exact result of an operation, as illustrated in Figure 7.  

 

 
Figure 7: Specification and implementation, which differ in functionality due to a bug in the implementation. 

 

The bug in impl is caused by an incorrect bitwidth definition of the add_8bit signal, leading to the carry-out of the 

addition being discarded. Roverifix identifies and corrects this bug by first rewriting the spec using associativity of 

addition. Then propagates custom FIX operators (described next) through both designs to identify a minimal fix, in 

this case increasing the bitwidth of add_8bit by 1.  

Figure 8 describes the general Roverifix flow. Roverifix initializes a first e-graph only with VeriLang derived from 

the Spec, as we wish to explore the space of designs equivalent to the Spec. This first e-graph is rewritten using the 

same set of rewrites as Roverify, constructing a set of candidate fixes. From this set of candidates, Roverifix extracts 

the design that is syntactically closest to the Impl. To achieve this Roverifix adds the following VeriLang expression 

to the e-graph, FIX(S,I). This FIX node encodes a correction, namely replacing I by S, is a correction, albeit a large 

modification. A second phase of rewriting is applied to this e-graph using only a new set of rewrites, described in  

Table 2. These rewrites push FIX nodes down the expression trees of Spec and Impl, where the objective is to share 

as much as possible. The deeper we can force the FIX nodes the smaller the corresponding correction. 
 

Table 2: FIX propagation and removal rewrites. We propagate FIX nodes over any VeriLang operator and remove FIX nodes when the 
suggested FIX is to replace something with itself. 

Name Left-Hand Side Right-Hand Side 

Fix over Operator FIX(a op b, c op d) FIX(a,c) op FIX(b,d) 

Fix Same FIX(a,a) a 

 



 
Figure 8: flow diagram describing the automated bug fixing assistant, Roverifix. The generated Fixed RTL is functionally equivalent to the 

specification but is the minimal change from the implementation. We highlight correct RTL in light green and buggy RTL in a darker green. 

 

Once the FIX nodes have been propagated through the second stage e-graph, an extraction phase is run to determine 

the minimal FIX nodes required to correct the design. The extracted VeriLang is converted to Verilog, taking the left 

argument of each FIX node, as this corresponds to a design that is equivalent to the specification. Roverifix can also 

report back to the user precisely where the fixes were applied. The extracted VeriLang for the example above would 

contain a single FIX operator, FIX(9,8), corresponding to the need to increment the bitwidth of the add_8bit signal as 

the sole correction. If there is no bug and via the initial rewriting, we discover that 𝑆 ≅ 𝐼, then we remove all FIX 

nodes from the e-graph via the “Fix Same” rewrite. 

 

VI.   RESULTS 

In all the following results we use an up-to-date version of an industry standard EC tool running on SLES 12 on 

Intel Xeon W-2155 CPUs. 
 

A. Roverify 

Open-source benchmarks are taken from [11]. We implement original and optimized RTL for these designs. We 

include two instances of a kernel from the H.264 VBSME, corresponding to summation trees of size four and eight, 
∑ |𝑎𝑖 − 𝑏𝑖|𝑖 . The Denorm Mult and box filter are Intel provided benchmarks. The box filter is a reconfigurable square 

filter, sampling four pixels at a time. For each benchmark, we run Roverify until either, it discovers a complete path 

between specification and implementation, or it deploys five iterations of rewriting. The e-graph rewrites different 

parts of the design in parallel. We did not see any increase in the EC tool compilation times. The runtimes are reported 

from when the solvers start running. The baseline, deploys all tool solve scripts in parallel, taking the fastest reported 

result. We run all Roverify generated proofs in parallel and report the maximum time taken to solve a single sub-

problem. In practice, the multi-processor environment introduced runtime overhead unrelated to solving the proof.  

Table 3 demonstrates the benefit of Roverify, resolving an inconclusive proof and reducing the total verification 

time. For the ADPCM Decoder, the EC tool already efficiently proves the correctness of the two designs, making the 

Roverify runtime overhead overall detrimental. It is worth noting that the intermediate proofs do help reduce the solve 

time. In the Denorm Mult example, when passed the original EC problem with no assistance, the EC tool did not 

return a result within 24 hours. In this case, Roverify is able to convert an inconclusive proof into one solved in less 

than a second. The assistant generated up to 115 intermediate proofs and 42 on average. 
 

Table 3: EC tool performance with and without intermediate proofs generated by the assistant. We report the baseline EC tool performance 
when solving the original EC problem. We also report the runtime of Roverify and the runtime of the EC tool when solving the problem with the 

intermediate proofs. The sum provides a total verification time for the assisted proof. The last column shows the speedup ratio achieved using 

Roverify. Runtimes are in seconds. 

Benchmark DPV without 

Assistance 

Roverify DPV with 

Assistance 

Assisted Total Speedup 

(without/with) 

ADPCM Decoder 0.68 0.38 0.49 0.87 0.78 

H-264 VBSME-4 7.93 7.04 0.71 7.75 1.02 

H-264 VBSME-8 93.13 14.30   0.20 14.50 6.42 

FIR Filter     5.50 3.49   0.79 4.28 1.29 

Box Filter     79.56 16.10 1.61 17.71 4.49 

Denorm Mult - 0.14   0.10 0.24 - 

In all other benchmarks, Roverify is a net positive. The introduction of intermediate proofs reduces the EC tool 

solve time by up to 465x (when we ignore the Roverify runtime). Including Roverify, total verification time is reduced 



by up to 6x. For each intermediate proof Roverify can tailor the most optimal solver orchestration script, which greatly 

helps performance. Such an advantage can only be gained because Roverify understands the rewrites applied. We do 

not run multiple solvers in parallel. 
 

B. Roverifix 

We have conducted a more limited evaluation of Roverifix, looking at a few examples. We first apply Roverifix to 

the example shown in Figure 7. Roverifix identifies the correction needed in under 0.12 seconds reporting back the 

FIX, updating the bitwidth of a single signal. To demonstrate real-world value, we applied Roverifix to an internally 

developed floating point norm component calculating 
1

√1+𝑥2
. Simulation discovered that the component incorrectly 

processed input NaNs. We passed a correct specification and the buggy implementation to Roverifix, which correctly 

identified a FIX inserting a mux to correctly handle NaNs. On this example Roverifix runs in 0.19 seconds. 

There is no limit on how many bugs Roverifix is able to correct in a single run, however there is also no limit on 

the size of a single correction. Namely, if Roverifix is unable to propagate FIX nodes through the e-graph then it will 

propose a potentially large correction, simply replace the implementation with the specification. We measure the size 

of the correction by the increase in circuit area of the corrected design over the implementation. Roverifix minimizes 

this distance to avoid proposing the direct replacement of the implementation with the specification.  

 

VI.   CONCLUSIONS 

In this paper, we have presented an RTL rewriting and analysis framework, leveraging the e-graph data structure to 

mitigate the phase ordering challenges. On top of this framework, we developed a pair of applications. First, Roverify, 

an assistant for datapath equivalence checking tools. Roverify decomposes the datapath equivalence checking problem 

into a sequence of independent checks, which are easier for the EC tool to solve. Second, Roverifix, a bug fixing tool 

that can automatically generate a minimal correction for a buggy implementation. We demonstrated that both tools 

have a meaningful impact on their respective challenges via several benchmarks. The underlying framework provides 

a solid foundation for a range of applications, as RTL rewriting is an essential component of many EDA tools. The 

applications themselves can reduce the burden on both FV engineers and RTL designers, helping them to prove 

equivalence faster and fix bugs with minimal manual intervention. More broadly, the paper demonstrates the value of 

manual or automated rewriting in assisting FV tools to achieve convergence and remove bugs. 

We are currently exploring how to make the tools more widely available and hope to integrate this technology into 

a complete datapath equivalence checking tool, since the existing interface between the tools is a barrier to greater 

performance. A particularly exciting direction would be to integrate SAT/SMT solvers into Roverify to bridge gaps 

beyond the limits imposed by our rewrite sets. For Roverifix, we could explore how equivalence checking 

counterexamples can guide the search for a correction. We have also yet to address how best to fix operator 

replacement bugs, where for example a greater than or equal was used in place of a greater than. A more general 

improvement would be adding support for C/C++ to consider specifications defined in higher-level languages. 

 

REFERENCES 
[1] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for system-level to RTL equivalence checking,” in Proceedings -Design, 

Automation and Test in Europe, DATE, 2009. 

[2] Coward, S., Morini, E., Tan, B., Drane, T., & Constantinides, G. A. (2023, October). Datapath Verification via Word-Level E-Graph 
Rewriting. In 2023 Formal Methods in Computer-Aided Design (FMCAD) (pp. 92-100). IEEE. 

[3] Coward, S., Constantinides, G. A., & Drane, T. (2022, September). Automatic datapath optimization using e-graphs. In 2022 IEEE 29th 

Symposium on Computer Arithmetic (ARITH) (pp. 43-50). IEEE. 
[4] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha, “Egg: Fast and extensible equality saturation,” in Proceedings of 

the ACM on Principles of Programming Languages, vol. 5, no. POPL, 2021. 

[5] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation, Stanford University, 1980. 
 

[6] L. De Moura and N. Bjørner, “Z3: An efficient SMT Solver,” in Lecture Notes in Computer Science including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4963 LNCS. Springer, 2008. 
[7] Coward, S., Constantinides, G. A., & Drane, T. (2023). Automating Constraint-Aware Datapath Optimization using E-Graphs. In 2023 60th 

ACM/IEEE Design Automation Conference (DAC) IEEE. 

[8] Coward, S., Constantinides, G. A., & Drane, T. (2023, June). Combining E-Graphs with Abstract Interpretation. In Proceedings of the 12th 
ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis (pp. 1-7). 

[9] M. Popoloski, “Slang,” 2023. [Online]. Available: https://github.com/MikePopoloski/slang 

[10] S. Sutherland, D. Mills, “Standard Gotchas Subtleties in the Verilog and SystemVerilog Standards That Every Engineer Should Know”, 
SNUG Boston 2006. 

[11] A. K. Verma, P. Brisk, and P. Ienne, “Data-flow transformations to maximize the use of carry-save representation in arithmetic circuits,” 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 10, pp. 1761–1774, 2008. 

https://github.com/MikePopoloski/slang

