(2024

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Crafting a Million Instructions/Sec RISCV-DV
HPC Techniques to Boost UVM Testbench Performance by Over 100x

Puneet Goel, Ritu Goel, Jyoti Dahiya

INCCreé COVERIFY

The Curious Case of RISC-V Verification

® High-end Processor Architecture involves intricate maneuvers like Instruction Pipelines,
Re-ordering, and Hyperthreading

® Verification of such cores requires a huge stimulus ranging over 10 random instructions*

® RISCV-DV' (coded in SystemVerilog) generates only about 10,000 instr/sec

B At this rate, it takes over Three Thousand Machine Years just to generate the stimulus

U
U
I

accellera

*https://semiengineering.com/what-makes-risc-v-verification-unique/
Tht’cps ://github.com/chipsalliance/riscv-dv

https://semiengineering.com/what-makes-risc-v-verification-unique/
https://github.com/chipsalliance/riscv-dv

The Curious Case of RISC-V Verification

® High-end Processor Architecture involves intricate maneuvers like Instruction Pipelines,
Re-ordering, and Hyperthreading

® Verification of such cores requires a huge stimulus ranging over 10 random instructions*

® RISCV-DV' (coded in SystemVerilog) generates only about 10,000 instr/sec

m Atthis rate, it takes over Three Thousand Machine Years just to generate the stimulus

R RISC

*https://semiengineering.com/what-makes-risc-v-verification-unique/
Thttps://github.com/chipsalliance/riscv-dv

https://semiengineering.com/what-makes-risc-v-verification-unique/
https://github.com/chipsalliance/riscv-dv

In This Talk ...

accellera

Section 1
Section 2
Section 3

Section 4

Why is my Testbench so Slow?

HPC Testbenching with eUVM

RISCV-DV Testbench Optimizations

Constraint Reduction and Optimization

Optimizing Memory Allocation and Reuse

Dierct Binary Generation (Skipping Assembler/Linker)
Native Data Types and Algorithmic Optimizations
The Road to Epiphany - A Parallelized RISCV-DV
Parallelizing RISCV-DV (32 threads)

2.5x
1.5x
> 2X
2X

14x

oEsion AND gmmm
DV N

In this Section ...

Why is my Testbench so Slow?
HPC Testbenching with eUVM

RISCV-DV Testbench Optimizations

The Road to Epiphany - A Parallelized RISCV-DV

The Free Lunch is Over

® Over the last 50 years, chip complexity has grown 50 Years of Microprocessor Trend Data*
exponentially, owing to the Moore’s Law 17 | & Transistof Count (thousands) ol

® Until 2005, thanks to Dennard’s Scaling, processor e
performance also grew at the same rate 1o .

® |n 2005, Herb Sutter wrote a seminal paper titled
“The Free Lunch is Over”

® Modern processors focus on HPC techniques, 10 s
including ... w0l

m Concurrency - Multicore Parallelism
m Programmable HW - Hybrid CPU/FPGAs

The Elephant in the Room

® Since its standardization in year 2005, SV has not added any HPC construct to HVL

* Data Sourced From: h:

accellera

The Free Lunch is Over

® Over the last 50 years, chip complexity has grown 50 Years of Microprocessor Trend Data*
exponentially, owing to the Moore’s Law

17 | 4 Transistot Count (thousands) L il
@ Single Threaded Performance (SpecINT X 10°) PR

® Until 2005, thanks to Dennard’s Scaling, processor |- frequercy tz)
performance also grew at the same rate o

® |n 2005, Herb Sutter wrote a seminal paper titled
“The Free Lunch is Over”

10° 0
® Modern processors focus on HPC techniques, 01 g =
including ... i __ ;
[| COnCUrrenCy - Multicore Parallelism 1970 1980 E) 2010 2020
m Programmable HW - Hybrid CPU/FPGAs o ooy M. Horh. . e, O Stachn, K. Ok, Hammond x4 . Bt
* Data Sourced From: h ithub. Karlrupp/microproc trend-dat

The Elephant in the Room

® Since its standardization in year 2005, SV has not added any HPC construct to HVL

\ (2924

The Free Lunch is Over

® Over the last 50 years, chip complexity has grown 50 Years of Microprocessor Trend Data*
exponentially, owing to the Moore’s Law

17 | 4 Transistot Count (thousands) L il
@ Single Threaded Performance (SpecINT X 10°) PR

® Until 2005, thanks to Dennard’s Scaling, processor |- frequercy (tz)
performance also grew at the same rate o

® |n 2005, Herb Sutter wrote a seminal paper titled
“The Free Lunch is Over”

10° 0
® Modern processors focus on HPC techniques, 01 g =
including ... i __ ;
[| COnCUrrenCy - Multicore Parallelism 1970 1980 E) 2010 2020
m Programmable HW - Hybrid CPU/FPGAs o ooy M. Horh. . e, O Stachn, K. Ok, Hammond x4 . Bt
* Data Sourced From: h ithub. Karlrupp/microproc trend-dat

The Elephant in the Room

® Since its standardization in year 2005, SV has not added any HPC construct to HVL

\ (2924

The Free Lunch is Over

® Over the last 50 years, chip complexity has grown 50 Years of Microprocessor Trend Data*
exponentially, owing to the Moore’s Law \o7 | 4 Transistot Count (thousands) PR
) © Single Theeaded Performance (SpecINT X 10%) Lo
® Until 2005, thanks to Dennard’s Scaling, processor " |- frequency iz -
5| ® Number of Logical Cores
performance also grew at the same rate 0
. . 10 . * --"
® |n 2005, Herb Sutter wrote a seminal paper titled R .
10° T 3 “.
“The Free Lunch is Over” - P2 :-':"5"'3\ o o 1d
o AP TR\ NS
. . BN g
® Modern processors focus on HPC techniques, " - o,‘(‘,(ee " :.~~:“‘9<,'
. . L - " o)
including ... whis R sel® o
14 A\ .“(‘
m Concurrency - Multicore Parallelism 1970 050 S 2010 2020
m Programmable HW - Hybrid CPU/FPGAs b 1D it b . Moo, oo, . B, . ki Ve .G
* Data Sourced From: h ithub. Karlrupp/microproc trend-dat

The Elephant in the Room

® Since its standardization in year 2005, SV has not added any HPC construct to HVL

(2024

accellera BV 1

Testbench is the New Bottleneck

Multicore Simulation Perspective

® Modern simulators enable multicore parallelism for RTL simulation

® Behavioral character makes tool-level parallelism impossible for TB
m SV lacks multicore semantics for the parallelization of TB

® SV testbench actually executes sequentially with respect to the RTL
m As per Amdahl’s law, the testbench becomes a bottleneck

Hybrid FPGA/CPUs: Co-Emulation Perspective

® RTL is synthesizable and can be mapped on FPGAs
® Behavioral nature of TB makes it impossible to map the TB on FPGA

m DPI layer adds an additional drag on the SV co-simulation interface

accellera

TESTBENCH

AE]

TESTBENCH

> DUT
(mapped
—> onFPGA)

Testbench is the New Bottleneck

Multicore Simulation Perspective

® Modern simulators enable multicore parallelism for RTL simulation
® Behavioral character makes tool-level parallelism impossible for TB
m SV lacks multicore semantics for the parallelization of TB

® SVtestbench actually executes sequentially with respect to the RTL

m As per Amdahl’s law, the testbench becomes a bottleneck

Hybrid FPGA/CPUs: Co-Emulation Perspective

® RTL is synthesizable and can be mapped on FPGAs

® Behavioral nature of TB makes it impossible to map the TB on FPGA
m DPI layer adds an additional drag on the SV co-simulation interface

accellera

TESTBENCH

DPI

~a

TESTBENCH

> DUT

(mapped

—> onFPGA) >

Testbench is the New Bottleneck

Multicore Simulation Perspective

® Modern simulators enable multicore parallelism for RTL simulation

® Behavioral character makes tool-level parallelism impossible for TB
m SV lacks multicore semantics for the parallelization of TB

® SV testbench actually executes sequentially with respect to the RTL
m As per Amdahl’s law, the testbench becomes a bottleneck

Hybrid FPGA/CPUs: Co-Emulation Perspective

® RTL is synthesizable and can be mapped on FPGAs
® Behavioral nature of TB makes it impossible to map the TB on FPGA
m DPI layer adds an additional drag on the SV co-simulation interface

accellera

TESTBENCH

AE]

TESTBENCH

> DUT
(mapped
—> onFPGA)

Another Testbench Performance Gotcha

module none;
function automatic
longint fib(longint n);
® HVL data types (byte, int etc) have an implicit 1{ (n <= 1) return n;
. . . . else
value change event with every arithmetic variable return fib(n-1) + fib(n-2); «
and expression endfunction 7
initial 8
$display(fib(42)); 9
endmodule 10

Goa W e

Native Data Processing long fib(long n) { 1
if (n <= 1) return n; 2

® Arithmetic algorithms coded in systems eSS)) ;
R return fib(n-1) + fib(n-2); 4

programming languages run an order of } 5
magnitude faster compared to SystemVerilog void main() { 6
import std.stdio; 7

writeln(fib(42)); 8

} 9

accellera

In this Section ...

Why is my Testbench so Slow?

HPC Testbenching with eUVM

RISCV-DV Testbench Optimizations

The Road to Epiphany - A Parallelized RISCV-DV

An Introduction to Embedded UVM (eUVM)

ABI Compatibility with C/C++

eUVM is an HVL build on top of : - . .
Object-Oriented Programming Paradigm

Dlang (an evolution of C++)

2| Associative/Dynamic Arrays
o NETEECE g Automatic Garbage Collector
Multicore Parallel Programming
® Multicore Powered Executes on Embedded Android/Linux/Windows
® 360° Portable Stimulus Multicore-Enabled Discrete Event Simulator

Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
® HW/SW Coverification VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

® Modern Productivity

® Clean Pointer-Less Syntax

eUVM

SINCIATIVE

An Introduction to Embedded UVM (eUVM)

ABI Compatibility with C/C++

eUVM is an HVL build on top of) : . .
Object-Oriented Programming Paradigm

Dlang (an evolution of C++)

2| Associative/Dynamic Arrays
e Native Efficiency g Automatic Garbage Collector
Multicore Parallel Programming
® Multicore Powered Executes on Embedded Android/Linux/Windows
® 360° Portable Stimulus Multicore-Enabled Discrete Event Simulator

Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
® HW/SW Coverification VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

® Modern Productivity

® Clean Pointer-Less Syntax

eUVM

SINCIATIVE

An Introduction to Embedded UVM (eUVM)

ABI Compatibility with C/C++

eUVM is an HVL build on top of) : . .
Object-Oriented Programming Paradigm

Dlang (an evolution of C++)

2| Associative/Dynamic Arrays
e Native Efficiency g Automatic Garbage Collector
Multicore Parallel Programming
® Multicore Powered Executes on Embedded Android/Linux/Windows
® 360° Portable Stimulus Multicore-Enabled Discrete Event Simulator

Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
® HW/SW Coverification VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

® Modern Productivity

® Clean Pointer-Less Syntax

eUVM

SINCIATIVE

An Introduction to Embedded UVM (eUVM)

ABI Compatibility with C/C++

eUVM is an HVL build on top of)) . .
Object-Oriented Programming Paradigm

Dlang (an evolution of C++)

2| Associative/Dynamic Arrays
e Native Efficiency g Automatic Garbage Collector
Multicore Parallel Programming
® Multicore Powered Executes on Embedded Android/Linux/Windows
® 360° Portable Stimulus Multicore-Enabled Discrete Event Simulator

Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
® HW/SW Coverification VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

® Modern Productivity

® Clean Pointer-Less Syntax

eUVM

SINCIATIVE

An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

® Native Efficiency

® Multicore Powered

® 360° Portable Stimulus

® Modern Productivity

® (Clean Pointer-Less Syntax
® HW/SW Coverification

accellera

import esdl;
import uvm;
class bus_trans: uvm_sequence_item {

}

mixin uvm_object_utils;
@rand ubvec!8 data;
@rand uint[] payload;

this(string name="") {
super (name) ;

}

constraint!qq{
payload.length >= 8;
payload.length < 256;
foreach (i, elem; payload) {
if (i > 0) payload[i] > payload[i-1];
}
unique [payload];
} payload_cst;

cesne (2924,
B

CONFERENCE AND EXHIBITION

An Introduction to Embedded UVM (eUVM)

override void run_phase(uvm_phase phase) { 1

super.run_phase(phase); 2

eUVM is an HVL build on top of load_device_drivers(); 2
. get_and_drive(phase); 4

Dlang (an evolution of C++) } g
override void connect_phase(uvm_phase phase) { 6

fd = open(”/dev/mem”, O_RDWR | O_SYNC); 7

® Native Efficiency if (fd < 0) assert(false, ”Failed to open /dev/mem”); s

. mem = mmap(null, HPS_TO_FPGA_LW_SPAN, PROT_READ | 9

® Multicore Powered PROT_WRITE, MAP_SHARED, fd, HPS_TO_FPGA_LW_BASE); 10

° . if (mem == MAP_FAILED) { 11

® 360° Portable Stimulus close(fd); -
e Modern Productivity ; assert(false, ”Can’t map memory”); f,

. 3 15

¢ Clean Pointer-Less Syntax override void final_phase(uvm_phase phase) { 16

° HW/SW Coverification super. final_phase(phase); 17
munmap (mem, HPS_TO_FPGA_LW_SPAN); 18

close(fd); 19

} 20

(2024
)

CONFERENCE AND EXHIBITION

Perfomance Comparison of UVM Implementations

*While C++ supports parallelism,

single-threaded
TeUVM is yet the only Multicore-enabled Implementation of UVM

*advanced Metaprogramming features in Dlang enable compile-time
constraint parsing, resulting in Ultra-Fast Constraint Solvers

both SC-UVM and SystemC are

Platform UVM PyUVM SC-UVM eUVM
Language SV Python C++ Dlang

o | Multicore-Enabled UVM X X xX* v

= Native Data Types X X v v
ABI Compatibility with C/C++ | % X v v
User Defined Attributes X X v

"@ | Code Introspection v v

< | Compile-Time Function Eval | % X v
Generative Programming % v

Python Efficacy

® Beingan interpreted
language, Python is
inherently slow and
has been
benchmarked to be
57x slower than C

" Full Support
Partial Support
% Not Supported

DESIGN AND QAT\QN

Comparison Between Constraint Solvers

SV PyVSC CRAVE eUVM o PyGen, the Python
Language SV Python C++ Dlang port of RISCV-DV,
BDD Solvers vV X v v currently generates
| SAT Solvers v v v v less than 100 instr/sec
%D Conditional Constraints v Vv v)
< | Array/Loop Constraints v Vv * v ® CRAVE (C++ Library)
SV-Like Constraint Syntax | ¥ % X v lags SV by over10x
° Native Rand Variables X X b 4 v
@ | Compile-time Processing X x v
Y | Multicore Solvers X X X v
RISCV-DV Port v x v o Fullsesgen
Partial Support
*CRAVE conditional and array/loop constraints are macro based X Not Supported

accellera

Testbench Parallelism in eUVM

‘Shared UVM Objects Shared Testbench
Components

Design Under Test (DUT)
(Emlation or Simulation Platform)

Figure: VIP-Level Parallelism in eUVM

worker threads running in parallel

‘ stream 1 ‘ ‘ stream 2 ‘_‘ stream 3 ‘ ‘ streamn‘
> T T =~

¢ TLM Fifos)
~ o > 1
- Virtual Sequence -

Figure: Sequence Parallelism in eUVM

accellera

uvm rootl‘ uvm rootz‘ uvm root3‘ |uvm rootn

— 5 g

Sysytem Level
uvm_root

Figure: Multi-root Configuration in eUVM

fork 1 fork 2 fork 3 forkn

1 slicen

4———— SEQUENCE ———>

slicel slice2 slice3

Figure: Parallelized Fork-Join

(2024

DV CON

CONFERENCE AND EXHIBITION

Tracing Testbench Performance in eUVM

uvm_trace usage

® cUVM addsuvm_trace method to UVYM uvm_trace (”GEN INSTR”, ”START”, UVM_NONE); 1
. . . // Code block to track Performance of 2

® |t works just like uvm_info method, but foreach (ref instr; instr_list) { 5
it additionally prints the Wall-clock Time . randomize_instr(instr, is_debug_program); «
with the log message uvm_trace(”GEN INSTR”, ”END”, UVM_NONE); ¢

uvm_trace log
UVM_TRACE [6.946821] riscv_instr_stream.d(42) @0: uvm_dock.root.uvm_test_top [GEN INSTR] START 1
UVM_TRACE [13.526620] riscv_instr_stream.d(47) @0: uvm_dock.root.uvm_test_top [GEN INSTR] END 2

R SN~ N 4
accellera sy

In this Section ...

Why is my Testbench so Slow?

HPC Testbenching with eUVM

RISCV-DV Testbench Optimizations

The Road to Epiphany - A Parallelized RISCV-DV

Prefer Procedural Randomization Over Constraints

function riscv_instr_name_t pick_instr(); 1

riscv_instr_name_t instr; 2

std::randomize(instr) with { 3

instr inside {allowed_instrs}; 4

! instr inside {disallowed_instrs}; =

}s 6

. . . return instr; 7

® Simple constraints can be replaced with a endfunction .
procedural randomization

® Dlang’s algorithms library comes in handy riscv_instr_name_t pick_instr() { :

with more complex constraints static riscv_instr_name_t[] instrs; 2

instrs.length = 0; 3

instrs ~= 4

setDifference(allowed_instrs.sort, 5

disallowed_instrs.sort); 6

size_t idx = urandom(@, instrs); 7

return dinstrs[idx]; 8

3 5

R SN~ N 4
accellera sy

Compile-Time Constraint Filtering

® RISCV-DV implements randomization of about 600

instructions . .)
constraint no_hint_illegal_instr_c { 1
m Constraints are defined in common templatized if (INSTR_NAME == C_JR) { A
base class rsl != ZERO; 3
. . - L } 4
m Constraint that applies to a specific instruction is 1 .

implemented using a constraint guard

Using Compile-Time Static If

static if (INSTR_NAME == C_JR) {

® cUVM enables compile-time filtering of constraints constraint! qf i
1 != ZERO; 3

® Constraint gets defined only for the specific RISC-V } ;z_hint_iuegal_instr_c; .
instruction it applies to 3 5

accellera

Avoid Memory Allocation

® Memory allocation is a significant run-time cost

® Since memory is shared by all threads, memory allocation is not multicore friendly

Reusing Dynamic Arrays and Queues

® Declaring adynamic array in a loop (or riscv_instr_name_t pick_rand_instr() { 1
= // snip 2
function) leads to repeated memory Y. IS Er TR (L] e SEEs .
allocation/GC cycles 4

. . . inter_set ~= setDifference(setIntersection 5

® This can be avoided by declaring the (instr_set, include_set, allowed_set), 6
array statically scoped) disallowed_i r:nstr[] .sort()); 7
idx = urandom(0, inter_set.length); 8

m Remember to reset the dynamic return(inter_set[idx]); 9
array/queue before putting it to reuse ¥ ©

DVCON

Avoid Memory Allocation

® Memory allocation is a significant run-time cost

® Since memory is shared by all threads, memory allocation is not multicore friendly

Reusing Dynamic Arrays and Queues

® Declaring adynamic array in a loop (or riscv_instr_name_t pick_rand_instr() { I
function) leads t ted [:
unc |0n) €ads to repeated memory static riscv_instr_name_t[] dinter_set; 3
allocation/GC cycles 4

. . . inter_set ~= setDifference(setIntersection 5

® This can be avoided by declaring the (instr_set, include_set, allowed_set), 6

array statically scoped) d'isallowed_'ir:nstr[] .sort()); 7
idx = urandom(0, inter_set.length); 8

m Remember to reset the dynamic return(inter_set[idx]); 9
array/queue before putting it to reuse ¥ ©

CONFERENCE AND EXHIBITION

accellera e

Avoid Memory Allocation

® Memory allocation is a significant run-time cost

® Since memory is shared by all threads, memory allocation is not multicore friendly

Reusing Dynamic Arrays and Queues

® Declaring a dynamic array in a loop (or riscv_instr_name_t pick_rand_instr() {
function) leads t ted [
unctionj t€ads to repeated memory static riscv_instr_name_t[] inter_se
allocation/GC cycles inter_set.length = 0;

. k X inter_set ~= setDifference(setInters
® This can be avoided by declaring the (instr_set, include_set, allowed
array statica[[y scoped) d'isallowed_'ir?str[] .sort());

) idx = urandom(0, inter_set.length);
m Remember to reset the dynamic return(inter_set[idx]);
array/queue before putting it to reuse }

instr-pick.d
1

2
t5

ection
_set),

~ o 0 s ow

5 ®

10

accellera

cesne (2924,
BV

CONFERENCE AND EXHIBITION

Optimizing RISC-V Functional Verification Flow

test.s test.o . .bi
‘RISCV-DVGenerator " Assembler }—" Linker test.elf elf2bin M ;?fﬁgﬂu
+ + backdoor
oad RISC-V Subsystem
‘ Memory Layout ‘ ‘ SPIKE Simulation/Emulation

® |n UVM terminology RISCV-DV plays the role of Sequence Generator (Sequencer)
® RISCV-DV writes out an ASM file that needs to be compiled and linked
® SPIKE (a high level C model) plays the role of reference model

RISCV-DV eUVM Port
® Generates a binary dump directly, and thus a eUVM RISCV-DV Generator | “°5*-21 0 Flogiam

backdoor
i igh- d RISC-V Subsyst
monolith high-performance executable By e bt

SYSTEMS v

In this Section ...

Why is my Testbench so Slow?

HPC Testbenching with eUVM

RISCV-DV Testbench Optimizations

The Road to Epiphany - A Parallelized RISCV-DV

Analyzing RISCV-DV Performance

CEEET PP PR PP AP EEEEEEEEE nitial Random Dump

LR TR H LT LT T[T T L H []] | Directed Streams
A T3 TR 2 1 T e oo = -+ [T DR Rl Merged Dump
Task Complexity
1 Generate and randomize a huge dump of random instructions O(n)
2 Generate and randomize a large number of directed streams* O(n)
3 Insert multiple Directed Streams into the previously generated dump O(nz)
4 Fixjump labels/addresses O(n)
5 Construct ASM string for every instruction O(n)

*Adirected stream is a set of instructions defining a specific program construct (like a for loop)

accellera

5

Algorithmic Optimizations - Taming Non-Linear Complexity
GO LTI LT T T LT T AT T LTI T ITTTELTTLT - tnitial Random Dump

l

[[TTTHIEAT "]"_ TEIHTIT | Directed Streams

WHWF\\’\‘*HH‘H—H—\’\ [[TIT] HHHTHTHH’] [LITTITTILTIITTITT] - Array of Pointers

CEGCE IARERERNAR] L e e e e e e e PP PR LT T T T PP - Merged Dump

Lazy Merging

® First create an array of null pointers of the size of the Random Dump
® Pick random locations where the Directed Streams need to be inserted
m Replace the null pointer at that location with a pointer to the Directed Stream

® A Merged Dump is then created in a single iteration over the Pointer Array

L2 E——

5

Parallelizing the Random Instruction Dump

® Create multiple slices of the Random Instruction Dump - Lines 3-4
® Spawn a fork for each slice - Lines 7-8

® Make every fork stick to a separate thread - Line 11

Fork[] forks; 1
for (size_t i=0; i!=cfg.par_num_threads; ++i) { 2
size_t start_idx = i x dinstr_count/cfg.par_num_threads; // start of the slice 3
size_t end_idx = (i + 1) * instr_count/cfg.par_num_threads; // end of the slice 4
Fork slice_fork = (size_t start, size_t end) { 5
return fork({ 6

for (size_t d=start; il=end; ++i) 7
randomize_instr(instr_list[i], is_debug_program); 8

b

} (start_idx, end_idx); 10
slice_fork.set_thread_affinity(i); 11
forks ~= slice_fork; 12

} 13

VCON

CONFERENCE AND EXHIBITION

Parallelizing the Random Instruction Dump

® Create multiple slices of the Random Instruction Dump - Lines 3-4
® Spawn a fork for each slice - Lines 7-8

® Make every fork stick to a separate thread - Line 11

Fork[] forks; 1
for (size_t i=0; i!=cfg.par_num_threads; ++i) { 2
size_t start_idx = i x dinstr_count/cfg.par_num_threads; // start of the slice 3
size_t end_idx = (i + 1) * instr_count/cfg.par_num_threads; // end of the slice 4
Fork slice_fork = (size_t start, size_t end) { 5
return fork({ 6

for (size_t d=start; il=end; ++i) 7
randomize_instr(instr_list[i], is_debug_program); 8

b

} (start_idx, end_idx); 10
slice_fork.set_thread_affinity(i); 11
forks ~= slice_fork; 12

} 13

VCON

CONFERENCE AND EXHIBITION

Parallelizing the Random Instruction Dump

® Create multiple slices of the Random Instruction Dump - Lines 3-4
® Spawn a fork for each slice - Lines 7-8

® Make every fork stick to a separate thread - Line 11

Fork[] forks; 1
for (size_t i=0; i!=cfg.par_num_threads; ++i) { 2
size_t start_idx = i x dinstr_count/cfg.par_num_threads; // start of the slice 3
size_t end_idx = (i + 1) * instr_count/cfg.par_num_threads; // end of the slice 4
Fork slice_fork = (size_t start, size_t end) { 5
return fork({ 6

for (size_t i=start; il=end; ++i) 7
randomize_instr(instr_list[i], is_debug_program); 8

b

} (start_idx, end_idx); 10
slice_fork.set_thread_affinity(i); 11
forks ~= slice_fork; 12

} 13

VCON

CONFERENCE AND EXHIBITION

Parallelizing the Random Instruction Dump

® Create multiple slices of the Random Instruction Dump - Lines 3-4
® Spawn a fork for each slice - Lines 7-8

® Make every fork stick to a separate thread - Line 11

Fork[] forks; 1
for (size_t i=0; i!=cfg.par_num_threads; ++i) { 2
size_t start_idx = i x dinstr_count/cfg.par_num_threads; // start of the slice

size_t end_idx = (i + 1) * instr_count/cfg.par_num_threads; // end of the slice
Fork slice_fork = (size_t start, size_t end) { 5

return fork({

for (size_t 1i=start; il=end; ++i)
randomize_instr (instr_list[i], is_debug_program); 8

s 9
} (start_idx, end_idx);
slice_fork.set_thread_affinity(i);
forks ~= slice_fork;

accellera ~ e

CONFERENCE AND EXHIBITION

Parallelizing Directed Streams Generation

® Determine the number of Directed Streams in a given category - Line 4
® Spawn a fork to generate the Directed Streams of the given category - Lines 7-8

® Stick every fork to a separate thread - Line 11

par_directed.d
Fork[] forks;

foreach (stream_name, ratio; directed_instr_stream_ratio) { // directed stream categories 2
uint stream_idx = 0; 3
uint dnsert_cnt = original_instr_cnt * ratio/1000; // number of directed streams 4
Fork dir_fork = (string name, uint ratio, uint idx, uint cnt) { 5

return fork({
generate_directed_instr_stream_idx(hart, label, orig_instr_cnt, kernel_mode,

name, ratio, instr_stream, idx, cnt); 8

b 9

} (stream_name, ratio, stream_idx, insert_cnt); 10

dir_fork.set_thread_affinity(forks.length); u

stream_idx += dinsert_cnt; 12

forks ~= dir_fork; 13

} 14

accellera : e

CONFERENCE AND EXHIBITION

Parallelizing Directed Streams Generation

® Determine the number of Directed Streams in a given category - Line 4
® Spawn a fork to generate the Directed Streams of the given category - Lines 7-8

® Stick every fork to a separate thread - Line 11

par_directed.d
Fork[] forks;

foreach (stream_name, ratio; directed_instr_stream_ratio) { // directed stream categories 2
uint stream_idx = 0; 3
uint dnsert_cnt = original_instr_cnt * ratio/1000; // number of directed streams 4
Fork dir_fork = (string name, uint ratio, uint idx, uint cnt) { 5

return fork({
generate_directed_instr_stream_idx(hart, label, orig_instr_cnt, kernel_mode,

name, ratio, instr_stream, idx, cnt); 8

b 9

} (stream_name, ratio, stream_idx, insert_cnt); 10

dir_fork.set_thread_affinity(forks.length); u

stream_idx += dinsert_cnt; 12

forks ~= dir_fork; 13

} 14

accellera : e

CONFERENCE AND EXHIBITION

Parallelizing Directed Streams Generation

® Determine the number of Directed Streams in a given category - Line 4
® Spawn a fork to generate the Directed Streams of the given category - Lines 7-8

® Stick every fork to a separate thread - Line 11

par_directed.d
Fork[] forks;

foreach (stream_name, ratio; directed_instr_stream_ratio) { // directed stream categories 2
uint stream_idx = 0; 3
uint dnsert_cnt = original_instr_cnt * ratio/1000; // number of directed streams 4
Fork dir_fork = (string name, uint ratio, uint idx, uint cnt) { 5

return fork({
generate_directed_instr_stream_idx(hart, label, orig_instr_cnt, kernel_mode, 7

name, ratio, instr_stream, idx, cnt); 8

b 9
} (stream_name, ratio, stream_idx, insert_cnt); 10
dir_fork.set_thread_affinity(forks.length); u

stream_idx += dinsert_cnt; 1
forks ~= dir_fork;

accellera ~ e

CONFERENCE AND EXHIBITION
SYSTEMSINCTIATIVE

Parallelizing Directed Streams Generation

® Determine the number of Directed Streams in a given category - Line 4
® Spawn a fork to generate the Directed Streams of the given category - Lines 7-8

® Stick every fork to a separate thread - Line 11

par_directed.d

Fork[] forks; 1
foreach (stream_name, ratio; directed_instr_stream_ratio) { // directed stream categories 2
uint stream_idx = 0;
uint dnsert_cnt = original_instr_cnt * ratio/1000; // number of directed streams
Fork dir_fork = (string name, uint ratio, uint idx, uint cnt) {
return fork({
generate_directed_instr_stream_idx(hart, label, orig_instr_cnt, kernel_mode,
name, ratio, instr_stream, idx, cnt); ¢

b 9

} (stream_name, ratio, stream_idx, insert_cnt); 10

dir_fork.set_thread_affinity(forks.length); 1

stream_idx += 1insert_cnt; 1

forks ~= dir_fork; 13

} 14

CONFERENCE AND EXHIBITION

accellera : e

Results and Conclusions

Performance Improvements for a 10 million instruction RISCV-DV test
(All timing values in seconds)
Instr Count Thread Count Execution Time Performance RAM Usage

10,000,000 1 57.86 1.00x 4.9GB
10,000,000 2 31.22 1.85x 4.9GB
10,000,000 4 18.03 3.21x 5.0GB
10,000,000 8 10.35 5.59x 5.0GB
10,000,000 16 5.53 10.46x 5.0GB
10,000,000 32 4.23 13.68x 5.0GB

The Importance of Shared-Memory Parallelization

® Running multiple simulations is not the most optimized way to utilize a multicore server

® |fyou are running a multicore RTL simulation, a single-threaded testbench becomes a bottleneck

The Memory Wall Perspective

® Modern CPUs (eg Apple M1) integrate a limited on-chip RAM

m External RAM access is slow and power hungry

Hybrid CPU/FPGAs - Co-Emulation Perspective

® |n a co-emulation setup, multiple CPU cores share a single FPGA core

m The DuT gets mapped to the FPGA
m A multicore-parallelized testbench is the best suited speedup scenario

The Importance of Shared-Memory Parallelization

® Running multiple simulations is not the most optimized way to utilize a multicore server

® |fyou are running a multicore RTL simulation, a single-threaded testbench becomes a bottleneck

The Memory Wall Perspective

® Modern CPUs (eg Apple M1) integrate a limited on-chip RAM
m External RAM access is slow and power hungry

Hybrid CPU/FPGAs - Co-Emulation Perspective

® |naco-emulation setup, multiple CPU cores share a single FPGA core

B The DuT gets mapped to the FPGA
m A multicore-parallelized testbench is the best suited speedup scenario

DESIGN AND QAT\QN

The Importance of Shared-Memory Parallelization

® Running multiple simulations is not the most optimized way to utilize a multicore server

® |fyou are running a multicore RTL simulation, a single-threaded testbench becomes a bottleneck

The Memory Wall Perspective

® Modern CPUs (eg Apple M1) integrate a limited on-chip RAM

m External RAM access is slow and power hungry

Hybrid CPU/FPGAs - Co-Emulation Perspective

® |n a co-emulation setup, multiple CPU cores share a single FPGA core

m The DuT gets mapped to the FPGA
m A multicore-parallelized testbench is the best suited speedup scenario

The Importance of Shared-Memory Parallelization

® Running multiple simulations is not the most optimized way to utilize a multicore server

® |fyou are running a multicore RTL simulation, a single-threaded testbench becomes a bottleneck

The Memory Wall Perspective

® Modern CPUs (eg Apple M1) integrate a limited on-chip RAM

m External RAM access is slow and power hungry

Hybrid CPU/FPGAs - Co-Emulation Perspective

® |naco-emulation setup, multiple CPU cores share a single FPGA core

m The DuT gets mapped to the FPGA
m A multicore-parallelized testbench is the best suited speedup scenario

DESIGN AND QAT\QN

Fork Me on Github

EUVM https://github.com/coverify/euvm
RISCVDV https://github.com/coverify/riscv_dv

accellera

https://github.com/coverify/euvm
https://github.com/coverify/riscv_dv

Questions?

accellera

	Why is my Testbench so Slow?
	HPC Testbenching with eUVM
	RISCV-DV Testbench Optimizations
	The Road to Epiphany – A Parallelized RISCV-DV

