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The Curious Case of RISC-V Verification

• High-end Processor Architecture involves intricate maneuvers like Instruction Pipelines,
Re-ordering, and Hyperthreading

• Verification of such cores requires a huge stimulus ranging over 1015 random instructions*
• RISCV-DV† (coded in SystemVerilog) generates only about 10,000 instr/sec

At this rate, it takes over Three Thousand Machine Years just to generate the stimulus

*https://semiengineering.com/what-makes-risc-v-verification-unique/
†https://github.com/chipsalliance/riscv-dv
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In This Talk…

Section 1 Why is my Testbench so Slow?
Section 2 HPC Testbenching with eUVM
Section 3 RISCV-DV Testbench Optimizations

Constraint Reduction and Optimization 2.5x
Optimizing Memory Allocation and Reuse 1.5x
Dierct Binary Generation (Skipping Assembler/Linker) > 2x
Native Data Types and Algorithmic Optimizations 2x

Section 4 The Road to Epiphany – A Parallelized RISCV-DV
Parallelizing RISCV-DV (32 threads) 14x
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The Free Lunch is Over
• Over the last 50 years, chip complexity has grown

exponentially, owing to the Moore’s Law
• Until 2005, thanks to Dennard’s Scaling, processor

performance also grew at the same rate
• In 2005, Herb Sutter wrote a seminal paper titled

“The Free Lunch is Over”
• Modern processors focus on HPC techniques,

including…
Concurrency – Multicore Parallelism
Programmable HW – Hybrid CPU/FPGAs

Transistor Count (thousands)

    Data Sourced From: https://github.com/karlrupp/microprocessor-trend-data

*

*
The Elephant in the Room

• Since its standardization in year 2005, SV has not added any HPC construct to HVL
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Testbench is the New Bottleneck
Multicore Simulation Perspective

• Modern simulators enable multicore parallelism for RTL simulation
• Behavioral character makes tool-level parallelism impossible for TB

SV lacks multicore semantics for the parallelization of TB

• SV testbench actually executes sequentially with respect to the RTL
As per Amdahl’s law, the testbench becomes a bottleneck

TESTBENCH

RTL

Hybrid FPGA/CPUs: Co-Emulation Perspective

• RTL is synthesizable and can bemapped on FPGAs
• Behavioral nature of TBmakes it impossible to map the TB on FPGA

DPI layer adds an additional drag on the SV co-simulation interface

TESTBENCH

DUT
(mapped
on FPGA)

DPI DPI
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Another Testbench Performance Gotcha

SV Lacks Native Data Types

• HVL data types (byte, int etc) have an implicit
value change event with every arithmetic variable
and expression

Native Data Processing

• Arithmetic algorithms coded in systems
programming languages run an order of
magnitude faster compared to SystemVerilog

fib.sv
1module none;
2function automatic
3longint fib(longint n);
4if (n <= 1) return n;
5else
6return fib(n-1) + fib(n-2);
7endfunction
8initial
9$display(fib(42));
10endmodule

fib.d
1long fib(long n) {
2if (n <= 1) return n;
3else
4return fib(n-1) + fib(n-2);
5}
6void main() {
7import std.stdio;
8writeln(fib(42));
9}
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In this Section…

Why is my Testbench so Slow?

HPC Testbenching with eUVM

RISCV-DV Testbench Optimizations
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An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

• Native Efficiency
• Multicore Powered
• 360o Portable Stimulus
• Modern Productivity
• Clean Pointer-Less Syntax
• HW/SW Coverification

eUVM Features

Dl
an

g

ABI Compatibility with C/C++
Object-Oriented Programming Paradigm
Associative/Dynamic Arrays
Automatic Garbage Collector
Multicore Parallel Programming
Executes on Embedded Android/Linux/Windows

eU
VM

Multicore-Enabled Discrete Event Simulator
Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

9 / 27



An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

• Native Efficiency
• Multicore Powered
• 360o Portable Stimulus
• Modern Productivity
• Clean Pointer-Less Syntax
• HW/SW Coverification

eUVM Features

Dl
an

g

ABI Compatibility with C/C++
Object-Oriented Programming Paradigm
Associative/Dynamic Arrays
Automatic Garbage Collector
Multicore Parallel Programming
Executes on Embedded Android/Linux/Windows

eU
VM

Multicore-Enabled Discrete Event Simulator
Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

9 / 27



An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

• Native Efficiency
• Multicore Powered
• 360o Portable Stimulus
• Modern Productivity
• Clean Pointer-Less Syntax
• HW/SW Coverification

eUVM Features

Dl
an

g

ABI Compatibility with C/C++
Object-Oriented Programming Paradigm
Associative/Dynamic Arrays
Automatic Garbage Collector
Multicore Parallel Programming
Executes on Embedded Android/Linux/Windows

eU
VM

Multicore-Enabled Discrete Event Simulator
Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

9 / 27



An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

• Native Efficiency
• Multicore Powered
• 360o Portable Stimulus
• Modern Productivity
• Clean Pointer-Less Syntax
• HW/SW Coverification

eUVM Features

Dl
an

g

ABI Compatibility with C/C++
Object-Oriented Programming Paradigm
Associative/Dynamic Arrays
Automatic Garbage Collector
Multicore Parallel Programming
Executes on Embedded Android/Linux/Windows

eU
VM

Multicore-Enabled Discrete Event Simulator
Parallelized Constraint Solvers
Multicore-Enabled Functional Coverage
Multicore-Enabled UVM Implementation
VPI/DPI/FLI/VHPI/Verilator Interface
Co-Emulation with Altera/Xilinx FPGAs

9 / 27



An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

• Native Efficiency
• Multicore Powered
• 360o Portable Stimulus
• Modern Productivity
• Clean Pointer-Less Syntax
• HW/SW Coverification

uvm.d
1import esdl;
2import uvm;
3class bus_trans: uvm_sequence_item {
4mixin uvm_object_utils;
5@rand ubvec!8 data;
6@rand uint[] payload;
7

8this(string name=””) {
9super(name);
10}
11

12constraint!q{
13payload.length >= 8;
14payload.length < 256;
15foreach (i, elem; payload) {
16if (i > 0) payload[i] > payload[i-1];
17}
18unique [payload];
19} payload_cst;
20}
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An Introduction to Embedded UVM (eUVM)

eUVM is an HVL build on top of
Dlang (an evolution of C++)

• Native Efficiency
• Multicore Powered
• 360o Portable Stimulus
• Modern Productivity
• Clean Pointer-Less Syntax
• HW/SW Coverification

coverification
1override void run_phase(uvm_phase phase) {
2super.run_phase(phase);
3load_device_drivers();
4get_and_drive(phase);
5}
6override void connect_phase(uvm_phase phase) {
7fd = open(”/dev/mem”, O_RDWR | O_SYNC);
8if (fd < 0) assert(false, ”Failed to open /dev/mem”);
9mem = mmap(null, HPS_TO_FPGA_LW_SPAN, PROT_READ |
10PROT_WRITE, MAP_SHARED, fd, HPS_TO_FPGA_LW_BASE);
11if (mem == MAP_FAILED) {
12close(fd);
13assert(false, ”Can’t map memory”);
14}
15}
16override void final_phase(uvm_phase phase) {
17super.final_phase(phase);
18munmap(mem, HPS_TO_FPGA_LW_SPAN);
19close(fd);
20}
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Perfomance Comparison of UVM Implementations

Platform UVM PyUVM SC-UVM eUVM
Language SV Python C++ Dlang

H
PC

Multicore-Enabled UVM � � � * �
†

Native Data Types � � � �

ABI Compatibility with C/C++ � � � �

M
et
a

‡

User Defined Attributes � � � �

Code Introspection � � � �

Compile-Time Function Eval � � � �

Generative Programming � � � �

*While C++ supports parallelism, both SC-UVM and SystemC are
single-threaded

†eUVM is yet the only Multicore-enabled Implementation of UVM
‡Advanced Metaprogramming features in Dlang enable compile-time

constraint parsing, resulting in Ultra-Fast Constraint Solvers

Python Efficacy

• Being an interpreted
language, Python is
inherently slow and
has been
benchmarked to be
57x slower than C

Legend

� Full Support
� Partial Support
� Not Supported
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Comparison Between Constraint Solvers

SV PyVSC CRAVE eUVM
Language SV Python C++ Dlang

Ag
ili
ty

BDD Solvers � � � �

SAT Solvers � � � �

Conditional Constraints � � � �

Array/Loop Constraints � � � * �

SV-Like Constraint Syntax � � � �

Sp
ee

d Native Rand Variables � � � �

Compile-time Processing � � � �

Multicore Solvers � � � �

RISCV-DV Port � � � �

*CRAVE conditional and array/loop constraints are macro based

Solver Efficacy

• PyGen, the Python
port of RISCV-DV,
currently generates
less than 100 instr/sec

• CRAVE (C++ Library)
lags SV by over 10x

Legend

� Full Support
� Partial Support
� Not Supported
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Testbench Parallelism in eUVM
Shared UVM Objects Shared Testbench

Components

Design Under Test (DUT)
(Emulation or Simulation Platform)

uvm objection
mechanism

uvm config
object

uvm phase
mechanism

sc
or

eb
oa

rd

coverage

VIP 1 VIP 2 VIP 3 VIP n

Thread 1 Thread 2 Thread 3 Thread n

Figure: VIP-Level Parallelism in eUVM

Virtual Sequence

stream 1 stream 2 stream  nstream 3

worker threads running in parallel

Asynchronous TLM Fifos

Figure: Sequence Parallelism in eUVM

uvm_root 1 uvm_root 2 uvm_root n

Sysytem Level
uvm_root

uvm_root 3

Figure:Multi-root Configuration in eUVM

SEQUENCE

fork 1 fork 2 fork 3 fork n

slice 1 slice 2 slice 3 slice n

Figure: Parallelized Fork-Join
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Tracing Testbench Performance in eUVM

• eUVM adds uvm_tracemethod to UVM
• It works just like uvm_infomethod, but

it additionally prints the Wall-clock Time
with the log message

uvm_trace usage
1uvm_trace(”GEN INSTR”, ”START”, UVM_NONE);
2// Code block to track Performance of
3foreach (ref instr; instr_list) {
4randomize_instr(instr, is_debug_program);
5}
6uvm_trace(”GEN INSTR”, ”END”, UVM_NONE);

uvm_trace log
1UVM_TRACE [6.946821] riscv_instr_stream.d(42) @0: uvm_dock.root.uvm_test_top [GEN INSTR] START
2UVM_TRACE [13.526620] riscv_instr_stream.d(47) @0: uvm_dock.root.uvm_test_top [GEN INSTR] END
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Prefer Procedural Randomization Over Constraints

• Simple constraints can be replaced with a
procedural randomization

• Dlang’s algorithms library comes in handy
with more complex constraints

instr-pick.sv
1function riscv_instr_name_t pick_instr();
2riscv_instr_name_t instr;
3std::randomize(instr) with {
4instr inside {allowed_instrs};
5! instr inside {disallowed_instrs};
6};
7return instr;
8endfunction

instr-pick.d
1riscv_instr_name_t pick_instr() {
2static riscv_instr_name_t[] instrs;
3instrs.length = 0;
4instrs ~=
5setDifference(allowed_instrs.sort,
6disallowed_instrs.sort);
7size_t idx = urandom(0, instrs);
8return instrs[idx];
9}

15 / 27



Compile-Time Constraint Filtering

• RISCV-DV implements randomization of about 600
instructions

Constraints are defined in common templatized
base class
Constraint that applies to a specific instruction is
implemented using a constraint guard

Using Compile-Time Static If

• eUVM enables compile-time filtering of constraints
• Constraint gets defined only for the specific RISC-V

instruction it applies to

compr_cst.sv
1constraint no_hint_illegal_instr_c {
2if (INSTR_NAME == C_JR) {
3rs1 != ZERO;
4}
5}

compr_cst.d
1static if (INSTR_NAME == C_JR) {
2constraint! q{
3rs1 != ZERO;
4} no_hint_illegal_instr_c;
5}
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Avoid Memory Allocation
Why is this Important?

• Memory allocation is a significant run-time cost
• Since memory is shared by all threads, memory allocation is not multicore friendly

Reusing Dynamic Arrays and Queues

• Declaring a dynamic array in a loop (or
function) leads to repeatedmemory
allocation/GC cycles

• This can be avoided by declaring the
array statically scoped

Remember to reset the dynamic
array/queue before putting it to reuse

instr-pick.d
1riscv_instr_name_t pick_rand_instr() {
2// snip ....
3riscv_instr_name_t[] inter_set;
4

5inter_set ~= setDifference(setIntersection
6(instr_set, include_set, allowed_set),
7disallowed_instr[].sort());
8idx = urandom(0, inter_set.length);
9return(inter_set[idx]);
10}

17 / 27



Avoid Memory Allocation
Why is this Important?

• Memory allocation is a significant run-time cost
• Since memory is shared by all threads, memory allocation is not multicore friendly

Reusing Dynamic Arrays and Queues

• Declaring a dynamic array in a loop (or
function) leads to repeatedmemory
allocation/GC cycles

• This can be avoided by declaring the
array statically scoped

Remember to reset the dynamic
array/queue before putting it to reuse

instr-pick.d
1riscv_instr_name_t pick_rand_instr() {
2// snip ....
3static riscv_instr_name_t[] inter_set;
4

5inter_set ~= setDifference(setIntersection
6(instr_set, include_set, allowed_set),
7disallowed_instr[].sort());
8idx = urandom(0, inter_set.length);
9return(inter_set[idx]);
10}

17 / 27



Avoid Memory Allocation
Why is this Important?

• Memory allocation is a significant run-time cost
• Since memory is shared by all threads, memory allocation is not multicore friendly

Reusing Dynamic Arrays and Queues

• Declaring a dynamic array in a loop (or
function) leads to repeatedmemory
allocation/GC cycles

• This can be avoided by declaring the
array statically scoped

Remember to reset the dynamic
array/queue before putting it to reuse

instr-pick.d
1riscv_instr_name_t pick_rand_instr() {
2// snip ....
3static riscv_instr_name_t[] inter_set;
4inter_set.length = 0;
5inter_set ~= setDifference(setIntersection
6(instr_set, include_set, allowed_set),
7disallowed_instr[].sort());
8idx = urandom(0, inter_set.length);
9return(inter_set[idx]);
10}

17 / 27



Optimizing RISC-V Functional Verification Flow

RISCV-DV Generator
test.s test.elfLinkerAssembler elf2bin

Memory Layout

test.o test.bin

RISC-V Subsystem
Simulation/Emulation

backdoor
load

SPIKE

Program
Memory

• In UVM terminology RISCV-DV plays the role of Sequence Generator (Sequencer)
• RISCV-DV writes out an ASM file that needs to be compiled and linked
• SPIKE (a high level C model) plays the role of reference model

RISCV-DV eUVM Port

• Generates a binary dump directly, and thus a
monolith high-performance executable

eUVM RISCV-DV Generator test.bin

RISC-V Subsystem
Simulation/Emulation

backdoor
load

SPIKE

Program
Memory
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Analyzing RISCV-DV Performance

Directed Streams

Initial Random Dump

Merged Dump

Task Complexity
1 Generate and randomize a huge dump of random instructions O(n)
2 Generate and randomize a large number of directed streams* O(n)
3 Insert multiple Directed Streams into the previously generated dump O(n2)
4 Fix jump labels/addresses O(n)
5 Construct ASM string for every instruction O(n)

*A directed stream is a set of instructions defining a specific program construct (like a for loop)
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Algorithmic Optimizations – Taming Non-Linear Complexity

Directed Streams

Array of Pointers

Initial Random Dump

Merged Dump

Lazy Merging

• First create an array of null pointers of the size of the Random Dump
• Pick random locations where the Directed Streams need to be inserted

Replace the null pointer at that location with a pointer to the Directed Stream

• A Merged Dump is then created in a single iteration over the Pointer Array
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Parallelizing the Random Instruction Dump

• Create multiple slices of the Random Instruction Dump – Lines 3-4
• Spawn a fork for each slice – Lines 7-8
• Make every fork stick to a separate thread – Line 11

par_random.d
1Fork[] forks;
2for (size_t i=0; i!=cfg.par_num_threads; ++i) {
3size_t start_idx = i * instr_count/cfg.par_num_threads; // start of the slice
4size_t end_idx = (i + 1) * instr_count/cfg.par_num_threads; // end of the slice
5Fork slice_fork = (size_t start, size_t end) {
6return fork({
7for (size_t i=start; i!=end; ++i)
8randomize_instr(instr_list[i], is_debug_program);
9});
10} (start_idx, end_idx);
11slice_fork.set_thread_affinity(i);
12forks ~= slice_fork;
13}
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Parallelizing Directed Streams Generation
• Determine the number of Directed Streams in a given category – Line 4
• Spawn a fork to generate the Directed Streams of the given category – Lines 7-8
• Stick every fork to a separate thread – Line 11

par_directed.d
1Fork[] forks;
2foreach (stream_name, ratio; directed_instr_stream_ratio) { // directed stream categories
3uint stream_idx = 0;
4uint insert_cnt = original_instr_cnt * ratio/1000; // number of directed streams
5Fork dir_fork = (string name, uint ratio, uint idx, uint cnt) {
6return fork({
7generate_directed_instr_stream_idx(hart, label, orig_instr_cnt, kernel_mode,
8name, ratio, instr_stream, idx, cnt);
9});
10} (stream_name, ratio, stream_idx, insert_cnt);
11dir_fork.set_thread_affinity(forks.length);
12stream_idx += insert_cnt;
13forks ~= dir_fork;
14}
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Results and Conclusions

Performance Improvements for a 10million instruction RISCV-DV test
(All timing values in seconds)

Instr Count Thread Count Execution Time Performance RAM Usage
10,000,000 1 57.86 1.00x 4.9 GB
10,000,000 2 31.22 1.85x 4.9 GB
10,000,000 4 18.03 3.21x 5.0 GB
10,000,000 8 10.35 5.59x 5.0 GB
10,000,000 16 5.53 10.46x 5.0 GB
10,000,000 32 4.23 13.68x 5.0 GB
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The Importance of Shared-Memory Parallelization

• Running multiple simulations is not the most optimized way to utilize a multicore server
• If you are running a multicore RTL simulation, a single-threaded testbench becomes a bottleneck

The Memory Wall Perspective

• Modern CPUs (eg Apple M1) integrate a limited on-chip RAM
External RAM access is slow and power hungry

Hybrid CPU/FPGAs – Co-Emulation Perspective

• In a co-emulation setup, multiple CPU cores share a single FPGA core
The DuT gets mapped to the FPGA
Amulticore-parallelized testbench is the best suited speedup scenario
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Fork Me on Github

EUVM https://github.com/coverify/euvm
RISCV DV https://github.com/coverify/riscv_dv
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Questions?
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