
A Survey of Predictor Implementation using

High-Level Language Co-simulation

Sean Little
Verus Research, New Mexico

sean.little@verusresearch.net

Abstract—When implementing a testbench for a complex algorithm, the “predictor”
component for constrained random verification is often implemented using a low-level
language such C or C++ and utilizes the SystemVerilog direct programming interface
(DPI). This “golden reference” implementation provides a source of truth and allows
for generating an expected result that can be compared with the synthesizable design
under test (DUT) outputs in a self-checking testbench utilizing constrained random
stimuli.

It is common to model a signal/image processing, cryptographic, or networking
algorithms in a high-level language such as MATLAB or Python to prove the concept of
the algorithm before porting it to register transfer level (RTL) code. These high-level
languages offer many advantages over low-level languages such as C or C++. It is
advantageous to reuse this proof-of-concept code directly rather than spending the
time and risk of porting this code to both C/C++ for the predictor and to RTL for the
DUT. Running high-level code directly from the HDL simulator is sometimes referred to
as “co-simulation.”

This paper will review some existing approaches for co-simulation including
commercial tools from MathWorks and open-source libraries such as CocoTB. We will
present a trade space that highlights advantages and disadvantages of existing
approaches considering things such as monetary cost, simulation performance, tool
support, debugging, and the general usability. Finally, we offer a lightweight, abstract
C++ API that can be used with SystemVerilog to allow for co-simulation of arbitrary
Python or MATLAB code. We will discuss why this approach has more advantages over
existing techniques.

This paper is organized according to the following sections:

I. Modern testbench architecture

II. Example design for illustration

III. Where do we get a good predictor?

IV. Verification framework

V. CocoTB

VI. The HDL Verifier

VII. Introducing a new API for co-simulation

 VIII. Performance data and conclusion

Sections I-IV provide background information necessary for introducing the topic of co-simulation. Sections V and

VI describe tools commonly used for co-simulation. Section VII introduces a new API developed at Verus Research

that allows for co-simulation to work in a much simpler, lower impact way than what is currently possible. Section

VIII presents data from an experiment that will compare performance and other data for the different techniques.

I. MODERN TESTBENCH ARCHITECTURE

Modern testbench architects frequently use the concept of constrained random stimuli to achieve good test

coverage. Whether using a verification framework such as UVM or something else, constrained random reduces the

effort required by the verification engineer to anticipate all the corner cases that must be tested. Rather than

explicitly creating test scenarios for every valid corner case, the verification engineer instead rules out stimulus

scenarios that represent invalid or unanticipated data. Using random number generators for inputs, these invalid

scenarios become “constraints” that eliminate data that does not need to be tested. Often the set of events or

scenarios that cannot happen in a system is smaller than the set of events that can happen—and therefore must be

tested. Thus, focusing on the smaller set of events—what does not need to be tested—simultaneously reduces the

effort of the verification engineer while creating a better testbench that can find more problems early in the

development cycle. See Figure 1 for a simplified diagram of a constrained random testbench. Note how a well

written testbench includes logic for automatically determining whether the test succeeded or not. It is therefore well

suited for automated regression testing because it does not require anyone to manually interpret complex waveforms

to look for failures.

C
o

n
st

ra
in

e
d

 R
an

d
o

m

St
im

u
lu

s

DUT

B
FM

 D
ri

ve
r

B
FM

M

o
n

it
o

r

=
Predictor or

 Shadow Model

Pass/Fail

Figure 1: Simplified Constrained Random Test Diagram

Although the advantages of using constrained random stimulus are well-recognized, this approach also comes

with its own set of challenges. For some kinds of complex algorithms, it can be challenging to create a comparison

in a self-checking testbench. The uncertain nature of the random input data requires a trusted “predictor” that will

accurately implement the algorithm in the design under test (DUT). The predictor is also sometimes referred to as

the “golden reference” or “shadow model.” The implementation of this predictor does not need to be as detailed as

the actual implementation in the DUT. For instance, it does not need to be synthesizable. But it must be accurate

and, ideally, free from the implementation assumptions made by the DUT designers.

Note that in this discussion we are considering high-complexity designs that implement algorithms in the domains

of signal/image processing, cryptography, or networking. A simple design such as a first-in first-out (FIFO) data

structure, where the predictor is trivially implemented, would not benefit from the techniques described in this

paper.

II. EXAMPLE DESIGN FOR ILLUSTRATION

The example that we will consider for this paper is a polyphase (parallel) finite impulse response (FIR) digital

filter. It is often necessary for the implementation of high-rate signal processing algorithms to accept multiple

samples per clock. Increasing the width of the pipeline allows for keeping up with data rates that could be multiple

giga-samples per second without proportionally increasing the clock frequency driving that pipeline. This is

particularly true for FPGAs where the maximum clock rate is limited. The structure of a polyphase FIR filter is

illustrated in Figure 2. Note that the filter coefficients or taps are represented by the h values fed into the multipliers.

Also note this design uses an AXI-streaming interface with full control signals including TVALID and TREADY,

even though those details are not displayed in Figure 2.

X[4n]

h0 h4 h8 h12

h1 h5 h9 h13

h2 h6 h10 h14

h3 h7 h11 h15

X[4n+1]

h0 h4 h8 h12

h1 h5 h9 h13

h2 h6 h10 h14

h3 h7 h11 h15

X[4n+2]

h0 h4 h8 h12

h1 h5 h9 h13

h2 h6 h10 h14

h3 h7 h11 h15

X[4n+3]

h0 h4 h8 h12

h1 h5 h9 h13

h2 h6 h10 h14

h3 h7 h11 h15

Y[4n]

Y[4n+1]

Y[4n+2]

Y[4n+3]

Figure 2: Simplified Polyphase FIR Filter Structure

Utilizing constrained random stimuli is useful for verifying this design. We need to exercise fixed-point corner

cases such as overflows and underflows in the input and output data. It is also important to thoroughly exercise the

control TVALID and TREADY signals, which should involve driving those signals randomly. Additionally, we may

need to build a system simulation that will supply statistically realistic data to exercise the filter and processing

downstream from the FIR. We will discuss this in more detail when we discuss the verification framework.

III. WHERE DO WE GET A GOOD PREDICTOR?

Sometimes a predictor is implemented in C or C++ specifically for use in the verification framework. This allows

for the testbench foreign language API to interface directly with the predictor code. If the testbench is written in

SystemVerilog, for example, the direct program interface (DPI) may be used. If the testbench is in VHDL, one

might consider the VHDL procedural interface (VHPI). In either case, the process of implementing the predictor in

C or C++ can be quite time consuming and complex, almost to the level of complexity required by the DUT.

Why use a high-level language such as MATLAB or Python for your predictor? Sometimes a high-level model of

the algorithm in the DUT already exists and is leveraged by the design team for DUT algorithm prototyping. In this

case skipping the step of porting the high-level model to C/C++ is clearly advantageous. But if a predictor must be

coded specifically for the testbench, there are numerous advantages and some disadvantages. Languages like Python

and MATLAB offer advantages such as large communities of developers, abundant reference material, and high-

quality domain-specific libraries. Some disadvantages include possibly slower testbench performance and higher

complexity of the build infrastructure. We will explore these trades later in this paper. Note that combining an HDL

simulation with a high-level language is sometimes referred to as “co-simulation” implying a cooperation between

different languages.

Another advantage of using a high-level language to keep the assumptions between the DUT and test distinct.

While industry best practices typically recommend that design and verification teams be split into two distinct

teams, this is often not possible. Without a separation between design and verification developers, there is

significant risk that the same faulty assumptions might be included in both the design and the test. The test might

therefore work perfectly but the design still could have serious problems. One way to provide decoupling of the

design and the verification environment is for the test to utilize a third-party library. If a test utilizes constrained

random stimulus and the DUT matches an industry standard library according to Figure 1, the developers can have

high confidence that the implementation is functionally correct—even if the development situation differs from

industry best practices.

These and other reasons make co-simulation a very powerful tool for some kinds of verification problems. This

technique provides a simplified, faster means of implementing a predictor than more traditional methods.

LANGUAGES TO CONSIDER

Unfortunately, there is no API built into SystemVerilog or VHDL that allows for direct co-simulation. Any

attempt to use co-simulation must therefore use the foreign APIs provided by the HDL of choice. There are likely

other effective techniques for predictor design or co-simulation that is done in different organizations. We are

hoping that constructive conversations might result from our sharing what we do, and here are likely good ideas that

other people/organizations have on this topic.

This paper will consider the costs and benefits of the following co-simulation libraries:

1. CocoTB [2]

2. The HDL Verifier [1] from MathWorks®

3. An API for co-simulation developed at Verus Research® that supports both Python and MATLAB

Note that for this paper, we are using Siemens QuestaSim® as our HDL simulator. Other simulators that support the

SystemVerilog DPI and Xilinx IP core simulation could also be used. We do not have access to tools other than

Questa and therefore cannot test them. Unfortunately, open-source simulators do not work for us because we need to

run simulations that utilize Xilinx IP and may contain both VHDL and Verilog RTL code. Note also that while there

are many useful languages that we could consider, we are going to focus our attention on Python and MATLAB.

A. Python

Python is an interpreted, dynamically typed open-source programming language. Python is an excellent choice for

a co-simulation testbench because it features a rich, well documented foreign API for linking the languages to

C/C++. There are also many high-quality, actively developed libraries for domain specific algorithm development.

Numpy, Scipy, Pycrypto, Scapy, Pandas, etc. are some prominent examples.

The disadvantage with using Python is typically related to performance. This can be a valid concern, but careful

consideration of how Python is used in an HDL test framework can virtually eliminate this drawback.

B. MATLAB

MATLAB is a commercial product created by MathWorks. It is also a dynamically typed, interpreted language. It

has historically been used for linear algebra, feedback control system prototyping, and signal processing. MATLAB

has been around longer than Python, but it has been continuously updated to include some modern constructs such

as objects and data structures. There are numerous domain-specific addon products for MATLAB that add capability

to the language. One of these is the HDL Verifier that is provided for co-simulation, which we will consider later in

this paper. Simulink is another addon product for running simulations in a graphical way, but we will not discuss

Simulink in this paper. All MathWorks products have high quality documentation and are actively supported.

MATLAB-centric HDL verification is particularly useful when there are teams of people using it in your

organization or there is already a large amount of existing MATLAB code.

There are several disadvantages to adopting MATLAB. It is an expensive, licensed, commercial tool and is

therefore much less flexible than Python. It cannot be embedded in another application, for example. It also has

fewer features such as threading or built-in network constructs. For applications such as networking or

cryptography, MathWorks products are probably not a good fit. Performance is also a common concern for a

MATLAB based co-simulation verification framework. But again, careful consideration of how MATLAB is used

in the framework can go a long way toward improving performance.

IV. VERIFICATION FRAMEWORK

All the testbenches developed and profiled for this paper share the same basic ideas. The FIR filter is being used

as a “correlator”. For communications or radar systems the correlator is an important component of the processing

pipeline because it can find a predetermined pattern, such as a networking preamble, even in the presence of noise.

Randomly inserting the preamble and verifying that the correlator accurately detects it in the expected location is

another benefit of using constrained random input data. As stated previously, it is also important to realistically

exercise the data path using the fixed-point data representation and show that it agrees sufficiently well with a

floating-point model. See Figure 3 for an illustration. You can see the correlator working by producing a red spike

exactly where the waveforms were randomly inserted as indicated by the green lines. We want to use MATLAB or

Python to generate both the random stimulus and the truth vectors for DUT verification.

For this paper, we are using the Xilinx “FIR Compiler” IP core for the DUT. Using a reliable DUT that is unlikely

to have bugs in it allowed us to focus on the verification framework without the need to develop/debug the DUT at

the same time. A detailed discussion of the DUT is beyond the scope of this paper, but we are using the following

configuration of the core:

• “Super-sampled” mode of the core with 100 tap coefficients determined in MATLAB and Python

• 10 parallel samples per clock

• Signed 16-bit samples for all input, output and tap data

• 14 fraction bits for the taps, 12 fraction bits for the input, and 5 fractional bits for the output

• 100 micro-seconds of simulation time (with a sample rate of 100Msps)

Figure 3: FIR Correlator Example

Note that simulating an IP core can be beneficial even beyond the somewhat contrived requirements for this

paper. It is very easy to initialize or drive a complex core like the Xilinx FIR Compiler incorrectly, and simulation is

an effective way to find problems caused by doing so. In fact, it took several iterations of testing different

configurations of the FIR compiler to get the functionality that we needed for this paper. We should also

acknowledge that simulating Xilinx or Altera IP can be challenging since one must consider details such as

compiling the simulation libraries, generating code for the core properly, and compiling the IP using the Questasim.

We utilized tools for all this, but a discussion of this complexity is also beyond the scope of this paper. Interested

parties are welcome to contact us for all the examples that are discussed in this paper.

Also, because we are using AXI-streaming, we need BFMs both to insert the data into the core and to accept

output from the core. The co-simulation framework must be able to pass data to and from the BFMs. The specifics

of how data is passed to the BFMs is different depending on the co-simulation framework being utilized. Those

details will be discussed presently.

V. COROUTINE BASED COSIMULATION TESTBENCH (COCOTB)

CocoTB is one of the more well-known frameworks for co-simulation, built for verifying HDL designs using

Python. The philosophy behind this framework is that the entire test architecture is ideally built in Python, with only

the DUT implemented in RTL. In addition to the obvious ability to apply the rich Python ecosystem to HDL

verification, CocoTB also provides for the following:

• Automatic test generation. Given a list of parameters and other settings, the CocoTB framework will

automatically generate tests that exercise all permutations of the specified test parameters. It is easy to

build a test that exercises the resets, for example.

• A build system that supports multiple open-source and commercial simulators. Ideally this build system

is easily used by automated continuous integration schemes.

• Addon libraries that provide well tested functionality like AXI/AXI-streaming BFMs. These BFMs are

very well built and worked well in our testbench.[3]

• Robust support for both Verilog and VHDL.

See Figure 4 for a diagram of our CocoTB test architecture.

As the name implies, CocoTB makes extensive use of Python “Coroutines”. A coroutine is an asynchronous

Python function that can pause execution and resume later. Every time a python “await” statement is executed, the

program switches context to another coroutine that may be ready to “wake up” and resume execution. CocoTB uses

coroutines to simulate the parallelism of hardware. You can think of a coroutine await statement in the same way

that you would a “@(posedge clk)” event statement in Verilog that might cause execution to switch to another event

in the same simulation step. Our testbench uses coroutines to both drive data into the DUT using the BFM driver and

to sample data from the DUT using the BFM monitor (see the green shaded blocks in Figure 4). The following code

summary illustrates coroutine syntax:

The advertised advantages of CocoTB are also a source of drawbacks. Python is well suited for algorithm

implementation, but much less intuitive for modeling concurrent hardware. Here is a list of disadvantages that we

encountered when building the CocoTB testbench:

• While writing and debugging coroutines is not difficult, it does require a different mindset than authoring

conventional Python code.

• It is possible to use a debugger, but because the Python interpreter is called by a Makefile rather than

directly, one must use a remote debugger to pause execution and step through the code. We successfully

used the remote debug functionality built-in to Pycharm.

• One must be very careful about things like sign extending data types—things that are not typically

considered in Python code. Also, we were unable to find any completely suitable fixed-point libraries. All

the open-source Python fixed-point projects we could find appear to be abandoned and lack the features we

needed for this test.

• Because the CocoTB scheduler is calling the Python interpreter every clock, one must be very careful to

precompute all the stimulus data in advance, or the simulation performance will be very bad.

• It is not easy to use the constrained random solvers that are built-in to SystemVerilog. One must use

Python-based random number generation instead. This means that useful features that is already present in

SystemVerilog must be rewritten in Python for verification engineers to benefit from infrastructure they are

already familiar with.

Other problems not related to using Python for test implementation:

• CocoTB wants to own the whole build system. Indeed, simulating a Xilinx IP core was difficult and

required rewriting the underlying Makefile targeting Questasim. Specifically, the CocoTB build process

always rebuilds a project from scratch; so, using an external script to initialize the simulation environment

by precompiling an IP core is not possible because the Makefiles explicitly delete all previously existing

compiled designs and libraries. This framework is not well suited for large projects with hundreds of source

files because all files are built from scratch every time the simulation starts.

• The support for Questasim is very rudimentary. There are many things that Questa can do to optimize

performance by trading visibility for simulation speed. None of those options are available to the user, and

again, rewriting the underlying build infrastructure was required to gain the necessary control of the

simulator. The default CocoTB build does not even provide access to the TCL command prompt or to the

async def run_test(dut, idle_inserter=None, backpressure_inserter=None):

 async def drive(dut):

 for test_data in corr.input:

 test_frame = AxiStreamFrame(test_data)

 await tb.source.send(test_frame)

 async def test(dut):

 …

 send_task = cocotb.start_soon(drive(dut))

 test_task = cocotb.start_soon(test(dut))

 await send_task

 await test_task

 …

waveform viewer. The simulation must be run to completion and the user debugs problems afterward by

looking at the logged data files. This means longer turn around times between simulation runs than would

be possible in a more conventional workflow.

• There is some evidence to suggest that CocoTB has been successfully run in Windows. But as evidenced

by numerous instances of Makefiles directly calling BASH commands (something difficult to support in

Windows), CocoTB really does not support a Windows workflow. We were unable to get a Windows build

to run in the time available to prepare this paper.

Our summary of our experience of using CocoTB is that, while this framework has some very impressive

features, we do not recommend it for large, complex simulations. It is better suited for small, directed unit tests

when other options are not readily available.

CocoTB (Python)

CoroutineCoroutine

QuestaSim

C
o

n
st

ra
in

ed
 R

an
d

o
m

St

im
u

lu
s =

Predictor or
 Shadow Model

Pass/Fail

GPI

DUT

VHPI/VPI

B
FM

 D
ri

ve
r

B
FM

M

o
n

it
o

r

Figure 4: Our CocoTB Architecture

VI. MATLAB CO-SIMULATION USING HDL VERIFIER

As stated previously, the HDL Verifier is a commercial product provided by MathWorks that allows for co-

simulation. MATLAB co-simulation assumes that the HDL simulator is the “master” that initiates the simulation,

and offloads data to MATLAB to run the predictor. Starting a MATLAB co-simulation session requires initializing

the connection between MATLAB and QuestaSim using a special elaboration command. After this initialization, the

simulation should be run using the normal QuestaSim workflow. See the diagram in Figure 5.

QuestaSim

MATLAB

C
o

n
st

ra
in

ed
 R

an
d

o
m

St

im
u

lu
s

Polyphase
FIR

A
XI

-s
 B

FM

D
ri

ve
r

A
XI

-s
 B

FM

M
o

n
it

o
r

=
Mocked Predictor

Pass/Fail

Predictor function(obj)

Built-in filter function

 Shared Memory or Socket

Clock/Reset/Other supporting signals

Figure 5: MATLAB Co-simulation Diagrams

The API provided by HDL Verifier is very complex. A MATLAB callback must be specified from the HDL

simulation environment that will be called by QuestaSim. This callback code is much more complex than typical

MATLAB code, probably because of the many features the API supports. The assumption made by the HDL

Verifier is that there is a module in the hierarchy of the HDL design that is substituted by a MATLAB function. The

function must therefore sample inputs and drive outputs the way an HDL module would. This is an unnatural way to

utilize MATLAB code, but it does provide a lot of flexibility. The MATLAB callback author could, for example,

store data that is persistent between calls and update that data utilizing the timing information provided by the API.

But if the DUT utilized a bus protocol such as AXI-streaming, the verification engineer would need to implement

the logic necessary to sample or drive data from the bus correctly. This task is normally performed by the BFM, and

implementing basic BFM functionality might therefore be needed in the MATLAB code. This is not optimal. See

Error! Reference source not found. for a comparison of advantages and disadvantages of the HDL Verifier.

Advantages Disadvantages

Supports simulation using sockets (computer running

HDL simulator might be different from the computer

running MATLAB)

Because of the licensed nature of this commercial tool,

the MATLAB interpreter cannot be embedded in a

separate application. Two applications must therefore

run to test one design.

Good port map type support Non-intuitive, complex workflow. Unusual steps are

required to perform elaboration.

Support for VHDL, Verilog and SystemVerilog Utilization of this tool in a continuous integration (CI)

system might be difficult and expensive

Good documentation, examples, and support Requires non-standard MATLAB code to implement

callback functions. Lots of careful following of example

code is required to learn the API.

API shares some similarities with FPGA-in-Loop

workflows. This may allow for reuse of the verification

environment when targeting a supported FPGA

development board.

May require BFMs to be reimplemented in MATLAB to

drive/sample bus protocols properly.

Support for different simulation configuration options.

Tight integration with other MathWorks tools.

Expensive commercial product. No support for open-

source simulation tools.

Good support for commercial HDL tool vendors.

The summary of our experience is that there are many trades associated with adopting the HDL Verifier. While

we were not able to complete the example testbench targeting this product in time for publication of this paper, we

have used the HDL Verifier for years in different contexts. MathWorks products are very good tools for algorithm

development and prototyping. The quality of the documentation they provide surpasses any open-source project that

comes to mind, and the quality of their technical support is also very high. The HDL Verifier is a very expensive

product that can implement a predictor for a constrained random testbench, but does so in an awkward, needlessly

complicated way. It has been our observation that MathWorks suffers from the mindset that all problems should be

solved using their products, regardless of whether there are better tools for the job. Like Python, MATLAB is good

for many things, but it is not well suited to modeling concurrent hardware. Our recommendation is to avoid the HDL

Verifier for co-simulation, and only adopt this product if you need other features that it provides.

VII. HALA: HIGH-LEVEL ABSTRACTION LANGUAGE API

At Verus Research, we have developed an API for sharing data to external languages such that nearly arbitrary

functions can be called directly from the HDL simulation tool. We call it High-level Abstraction Language API

(HALA). We currently only support SystemVerilog as the verification language since we are using DPI. Support for

VHDL could probably be added. The philosophy of this approach is to keep things simple. Rather than supporting a

host of esoteric features, we only support calling a function in Python or MATLAB from SystemVerilog. There is no

attempt to preempt any functionality already provided by the HDL simulation tool. The external language has no

concept of simulation time, for example. Therefore, only functionality analogous to SystemVerilog functions—that

do not consume time—can be implemented. HALA is only used for implementing a predictor, and/or providing

detailed stimulus data to a BFM. See Figure 6 for a high-level diagram of HALA. We use SystemVerilog for what it

is good for, and languages such as MATLAB/Python for what they are good for.

Note that the embedded Python[4] and the MATLAB Engine[5] APIs were used to build HALA.

This allows our example correlator testbench to be very simple and use components that were already available.

We have tools to compile Xilinx IP cores for simulation. We have a BFM for correctly stimulating and sampling

AXI-streaming interfaces.

QuestaSim

G
e

n
er

at
e

B
o

th
 In

p
u

t
D

at
a

an
d

 E
xp

ec
te

d
 O

u
tp

u
t

D
at

a
(o

n
e

 P
yt

h
o

n
/M

A
T

LA
B

 c
al

l)

DUT
Correlator

B
FM

 D
ri

ve
r

B
FM

M

o
n

it
o

r

=

Input
Data

Pass/Fail

Expected
Output Data

Alignment
Queue

Figure 6: High Level Abstraction Language API (HALA) Test Architecture

Notes about this test:

• We used exactly the same Xilinx IP core for the DUT and test parameters as were used in testing the other

frameworks

• The test was implemented using a single MATLAB function call (all conversion to fixed-point was done in

MATLAB)

• The test was run in both Windows and Linux

• The Python test of HALA was not completed in time for publication

The following is the essentially the SystemVerilog testbench (the BFM and DUT declarations are not shown):

The following tables provide a list of current features and limitations:

Python

Feature Limitation

Arbitrary functions can be called from arbitrary

locations using relative paths

API should be updated to use a C++ map rather than a

SystemVerilog associative array of chandles; all

references to chandles could be removed

Virtual environments are supported Only SystemVerilog “byte”, “longint” and “real” arrays

are supported for I/O between Python and

SystemVerilog

fork

 begin: drive

 cosim_helper_pkg::ints_t input_int, test_int;

 bfm_bases::data_transfer_t input_data;

 matlab_pkg::output_t outputs;

 // pass parameters to MATLAB

 success = success && matlab.run_int("cosim_wrapper", {arg0, arg1, arg2, arg3, arg4},

outputs);

 assert (success || outputs.size() < 2) else

 $fatal(1, "unable to run cosim_wrapper matlab function");

 assert (outputs[0].geti(input_int)) else

 $fatal(1, "unable to convert output[0] into ints");

 input_data = cosim_helper_pkg::Converter#(shortint)::to_bfm(input_int,

SAMPLES_PER_CLOCK);

 num_test_words = input_int.size() / SAMPLES_PER_CLOCK;

 assert (outputs[1].geti(test_int)) else

 $fatal(1, "unable to convert output[1] into ints");

 expected_data = cosim_helper_pkg::Converter#(shortint)::to_parallel(test_int,

SAMPLES_PER_CLOCK);

 drv.put(input_data);

 $info("data insertion complete");

 end

 begin: test

 for (int i = 0; i < num_test_words; i++) begin

 bfm_bases::data_transfer_t outp;

 shortint output_ints[$][$];

 mon.get(outp);

 output_ints = cosim_helper_pkg::Converter#(shortint)::from_bfm(outp,

SAMPLES_PER_CLOCK, '1);

 assert (output_ints[0] == expected_data[i]) else begin

 for (int ii = 0; ii < SAMPLES_PER_CLOCK; ii++) begin

 $display("%0d: %0h != %0h ", ii, output_ints[0][ii], expected_data[i][ii]);

 end

 success = '0;

 $error("mismatch at word %0d", i);

 end

 end

end

join

Arbitrary numbers of inputs and outputs are supported The run functions only allow for uniform input data.

Meaning that multiple inputs can only be one of the

supported types. Mixed types are not currently allowed.

Module state is preserved between calls; global data can

be updated and used from one call to the next

Functions using integer inputs must be scalars.

Built-in support for remote debugging

Automated build system that checks for necessary

compilers and versions

Unit tests for both Windows and Linux

$error, $warning and $info system calls are exposed to

python

MATLAB

Feature Limitation

Arbitrary MATLAB functions can be called from

arbitrary locations using relative paths

Only SystemVerilog “byte”, “longint” and “real” arrays

are supported for I/O between Python and

SystemVerilog

Arbitrary numbers of input and output arguments are

supported

The run functions only allow for uniform input data.

Meaning that multiple inputs can only be one of the

supported types. Mixed types are not currently allowed.

API is built on top of a C++ framework that allows any

C++ application to communicate with MATLAB (not

just HALA)

$error, $warning, and $info system functions cannot be

exposed to MATLAB without considerable effort.

Automated build system Running a MATLAB function that does not have any

outputs will currently produce an error

Unit tests for both Windows and Linux The “finalize” command currently produces a segfault

caused by a mismatch between precompiled binaries

provided by MathWorks and those provided by Siemens.

This is a well understood problem with a current work

around that will be fixed given more time.

Works well with fixed-point data (when casted to a

supported I/O type)

Requires two memcpy commands to move data from

MATLAB to SystemVerilog. This should be reduced to

one call.

THE PROMISE OF A UNIVERSAL API

We made the attempt to build a SystemVerilog interface class that would support arbitrary languages for co-

simulation. We believe that is possible, but the differences between our targeted languages are significant, and

hampered the ability to build a uniform interface. For example, there is no concept of a “module” in MATLAB as

there is in Python. Python allows for embedding the interpreter into an external application while MATLAB does

not permit this. Also, as we refined the API after implementing it in Python, some things that we initially did using

SystemVerilog constructs were moved to C++ data structures for the MATLAB implementation. So, while we have

a functional API for both Python and MATLAB, there is still a lot of work to do.

We believe that it is possible to develop HALA into an API that would allow any language with a good C-based

foreign interface to connect with SystemVerilog. That was initially the aim of this paper but realizing that goal

proved too time consuming to implement in the allotted time frame. Given more time and effort, HALA could

include a generic DPI interface that would function like an abstract base-class. If there were a need to implement a

SystemVerilog co-simulation bridge to a different language such as R, Julia, or Lua, one could do so by

implementing the necessary API defined in that generic interface.

VIII. PERFORMANCE DATA AND CONCLUSION

The following table provides the raw simulation performance data. Specifications of the computers running these

experiments:

• Windows 10 computer: Laptop i7-11850H @ 2.50GHz, 128 Gb RAM

• Linux computer: Proxmox VM running Ubuntu 22.04 with generic 64-bit CPU, 64 Gb RAM allocated;

same VM used for all experiments

Note that the means for measuring memory were different between CocoTB and HALA. HALA has built-in means

for sampling memory, but CocoTB does not have these measurements built-in.

 Total DPI Time (sec) Total Simulation Time (sec) Max Physical Memory

HALA MATLAB, Windows 11.9 110 3.8 Gb

HALA MATLAB, Linux 0.06 54 6.6 Gb

CocoTB (Python, Linux) 85.6 584 Mb

The following is a trade matrix for considered techniques:

 CocoTB HDL Verifier HALA

Source code provided yes no yes

Direct driving of RTL yes yes no

Build system provided yes no yes

Provides access to

simulator

no yes yes

Linux support yes yes yes

Windows support no yes yes

MATLAB support no yes yes

Python support yes no yes

What starts the simulation Makefile VSIM or Simulink VSIM

We hope that this has been an illustrative summary of available options for co-simulation. HALA was built to

address problems with existing frameworks while not attempting to replace techniques that already work well. But

there is a lot of work still to do. We welcome constructive conversations about how other design/verification groups

verify complex designs, whether by using constrained random and co-simulation or by using something else. And if

the ideas presented in this paper related to a universal co-simulation API have any merit, we are interested in

exploring possible means of collaboration.

REFERENCES

[1] (https://www.mathworks.com/help/hdlverifier/hdl-verification-with-cosimulation.html, n.d.)

[2] (https://www.cocotb.org/, n.d.)

[3] (https://github.com/alexforencich/cocotbext-axi, n.d.)

[4] (https://docs.python.org/3/extending/embedding.html, n.d.)

[5] (https://www.mathworks.com/help/matlab/calling-matlab-engine-from-cpp-programs.html, n.d.)

https://github.com/alexforencich/cocotbext-axi
https://docs.python.org/3/extending/embedding.html
https://www.mathworks.com/help/matlab/calling-matlab-engine-from-cpp-programs.html

