
PyRDV: a Python-based solution to the
requirements traceability problem

Fernando Gabriel Orge

Allegro microsystems, Buenos Aires, Argentina

Agenda

• Motivation

• What’s PyRDV?

• Sample Case

• Conclusions

Motivation

Motivation

Motivation

• A successful design will meet the following conditions:
• Designers must implement all the requirements

• Verification engineers must verify all design specifications

• We need to solve
• Requirements To Features Mapping Problem

• Features To Verification Elements Mapping Problem

What’s PyRDV?

• A theoretical framework to prove the solution to the problem

• A detailed workflow for IC Developers

• A CI / CD service to periodically check for sign-off metrics

• A Python-based software solution

Theoretical Framework

Theoretical Framework

• One-To-One Relation

• Preferred case

• Strongly covered feature

• Strongly linked verification element

Theoretical Framework

• Many-To-One Relation

• Weakly covered feature

• Not atomic feature

• Might require feature slicing

Theoretical Framework

• One-To-Many Relation

• Strongly covered features

• Integration/top-level test

• Simple features

Theoretical Framework

• Unrelated elements

• Uncovered feature
• Coverage hole

• Useless verification element
• Over-engineering

Theoretical Framework

Theoretical Framework

Theoretical Framework

Theoretical Framework: Job is done when…

• All features are strongly or weakly covered

• All verification elements are linked

• This is the completeness condition

• Can be extrapolated to also solve
• Requirements To Features Mapping Problem

• Requirements To Verification Elements Mapping Problem

Workflow of IC Developers

CI/CD Service

Python-based software solution

Python-based software solution

Sample Case

Sample Case

Sample Case

Sample Case

Sample Case

Sample Case

Reports

Reports

Conclusions

• We used GitLab to centralize and manage all the information.
• Including requirements, features or design specification and verification plan.

• We eliminated the need for developers to adapt to a new tool.
• GitLab was already a tool in use by the company.

• We used CI/CD services to improve design and verification workflow.
• It allows us to find potential coverage holes faster.

• The framework is not limited to GitLab.
• Can be applied to any platform that offers an issue-tracking capability.

Conclusions

• We developed a Python-base solution.
• The algorithms and the design pattern can be applied to any other language.

• We can improve the effectiveness and efficiency of the design process.
• We can always check that all requirements are implemented.

• We can always check that all specifications are verified.

• We are planning to use AI techniques to predict the execution time of
future projects based on the information collected by the PyRDV tool.

Thanks for attending
Questions?

	Slide 1: PyRDV: a Python-based solution to the requirements traceability problem
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: What’s PyRDV?
	Slide 7: Theoretical Framework
	Slide 8: Theoretical Framework
	Slide 9: Theoretical Framework
	Slide 10: Theoretical Framework
	Slide 11: Theoretical Framework
	Slide 12: Theoretical Framework
	Slide 13: Theoretical Framework
	Slide 14: Theoretical Framework
	Slide 15: Theoretical Framework: Job is done when…
	Slide 16: Workflow of IC Developers
	Slide 17: CI/CD Service
	Slide 18: Python-based software solution
	Slide 19: Python-based software solution
	Slide 20: Sample Case
	Slide 21: Sample Case
	Slide 22: Sample Case
	Slide 23: Sample Case
	Slide 24: Sample Case
	Slide 25: Sample Case
	Slide 26: Reports
	Slide 27: Reports
	Slide 28: Conclusions
	Slide 29: Conclusions
	Slide 30: Thanks for attending Questions?

