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Motivation

• A successful design will meet the following conditions:
• Designers must implement all the requirements

• Verification engineers must verify all design specifications

• We need to solve
• Requirements To Features Mapping Problem

• Features To Verification Elements Mapping Problem



What’s PyRDV?

• A theoretical framework to prove the solution to the problem

• A detailed workflow for IC Developers

• A CI / CD service to periodically check for sign-off metrics

• A Python-based software solution
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Theoretical Framework

• One-To-One Relation

• Preferred case

• Strongly covered feature

• Strongly linked verification element



Theoretical Framework

• Many-To-One Relation

• Weakly covered feature

• Not atomic feature

• Might require feature slicing



Theoretical Framework

• One-To-Many Relation

• Strongly covered features

• Integration/top-level test

• Simple features



Theoretical Framework

• Unrelated elements

• Uncovered feature
• Coverage hole

• Useless verification element
• Over-engineering
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Theoretical Framework: Job is done when…

• All features are strongly or weakly covered

• All verification elements are linked

• This is the completeness condition

• Can be extrapolated to also solve
• Requirements To Features Mapping Problem

• Requirements To Verification Elements Mapping Problem



Workflow of IC Developers



CI/CD Service



Python-based software solution
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Conclusions

• We used GitLab to centralize and manage all the information.
• Including requirements, features or design specification and verification plan.

• We eliminated the need for developers to adapt to a new tool.
• GitLab was already a tool in use by the company.

• We used CI/CD services to improve design and verification workflow.
• It allows us to find potential coverage holes faster.

• The framework is not limited to GitLab.
• Can be applied to any platform that offers an issue-tracking capability.



Conclusions

• We developed a Python-base solution.
• The algorithms and the design pattern can be applied to any other language.

• We can improve the effectiveness and efficiency of the design process.
• We can always check that all requirements are implemented.

• We can always check that all specifications are verified.

• We are planning to use AI techniques to predict the execution time of 
future projects based on the information collected by the PyRDV tool.



Thanks for attending
Questions?
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