
Introduction of IEEE 1801-2024 (UPF4.0) improvements
for the specification and verification of low-power

John Decker, Daniel Cross – Cadence Design Systems
Amit Srivastava – Synopsys

Lakshmanan Balasubramanian - Texas Instruments

Agenda
• Introduction

• Interconnect between UPF supplies and arbitrary HDL types

• Improvements in successive refinement and refinable macros

• Overview of Retention Changes

• Virtual Supply and Virtual Equivalence

• General Updates

• Beyond 4.0

• Q/A

Introductions/Acknowledgements
• Presenters

• John Decker : 1801 WG Chair - Cadence Design Systems
• Amit Srivastava : 1801 WG Vice-Chair - Synopsys
• Daniel Cross : Cadence Design Systems

• Contributors
• Lakshmanan Balasubramanian : 1801 WG secretary, Texas Instruments
• Marcelo Glusman – Cadence, Paul Bailey - Nordic Semiconductor,
• Rick Koster - Siemens EDA, Progyna Khondkar - Cadence

• Special thanks to the 1801 WG
• Over 40 members representing 16 companies
• Former members John Biggs(previous Chair), Phil Giangarra, David Cheng

• Thanks to IEEE Standards Association and Accellera
• This presentation solely represents the views of the author(s), and does not necessarily represent a position of either the IEEE

P1801 Working Group, the IEEE Design Automation Standards Committee, IEEE or the IEEE Standards Association.

• Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-
Power, Energy-Aware Electronic Systems”, IEEE Std. 1801 -2024

Unified Power Format (UPF)
• IEEE Standard for expressing

Power Intent
• To define power architecture and power

management control
• To minimize power consumption
• Enables a consistent representation of power

intent across all aspects of the design and
verification flow

• Enables early verification of power intent

• An Evolving Standard
• 6 versions of UPF over ~18 years
• Donations from Accellera UPF1.0 and Si2 CPF

2.0 and 2.1
• 1801-2024 had contributions from more than

20 chip design and EDA companies

• Based upon Tcl
• Tcl syntax and semantics

• And HDLs
• SystemVerilog, VHDL, SystemC

• For Verification
• Simulation, Emulation, Static/Formal

• For Implementation
• Synthesis, DFT, P&R, etc.

• And for System Level Power Modeling
• Abstract power models with power_expr

4

201920162009 2010 2011 2012 2013 20142006 2007 2008 2015

UPF-1.0

Donated

to IEEE

1801-2009

(AKA UPF-2.0)

Published

UPF-1.0

Kick off

Meeting

Accellera

UPF-1.0

Published

1801-2013

(AKA UPF-2.1)

Published

CPF-2.0

Donated

to IEEE

1801a-2014

(AKA UPF-2.2)

Published

1801-2015

(AKA UPF-3.0)

Published

2017

1801-2018

(AKA UPF-3.1)

Published

Evolution of the Standard

5

2018 2025

New Project

Revision of

1801-2024

1801-2024

(AKA UPF-4.0)

Published

2024

CPF-2.1

Donated

to IEEE

. . .

UPF 4.0 – Major Goals
• Enable low power simulation with mixed-signal features like real

number modeling

• Enable accurate modeling of Retention

• Enhance IP design reuse with refinable macros

• Improve successive refinement flow

• Address over 200 Mantis items tracking improvement requests.
• Enable Virtual Supplies

• Updates/Clarifications to semantics

• Ease-of-use features

Summary of Change Topics

• Precedence

• SPA, retention, composite types, Macros

• Naming Related

• Rooted vs Simple name clarifications

• Escaped naming styles

• Generate block delimiter

• Library name (5.3.3.2)

• Complete update of Annex E (example)

• Command Updates

• set_port_attributes –is_analog allowed on
instance pins

• set_port_attributes –feedthrough improvements

• set_design_attributes with no object creates a “UPF“
wide attribute

• set_repeater –repeater_supply mandatory

• New Concepts

• Refinable Macro

• Implementation UPF

• Virtual nets/ports/sets/equivalence

• Tunneling

• Connections to real (VCM)

• Major Updates

• Power distribution section 4.5.1

• Simulation of state retention (9.7)

• Annex I – VCM usage examples

• Supply equivalence

• Clarifications (partial list)

• Major improvements to Definitions

• Resolved elements list

• Literal supply

• Open SA repository

Command/Option Change Summary
New Options

set_isolation –async_set_reset
 -async_clamp_value

connect_supply_net –vcm
 -tunneling

set_port_attribute -is_refinable_macro
 -async_clamp_value

load_upf -implementation

define_power_model –update
 -implementation
 -complete

create_supply_net -virtual

create_supply_port –virtual

create_supply_set -virtual

set_retention -applies_to {latch ff both}
 –restore_period_condition
 -powerdown_period_condition
 -restore_event_condition
 -save_event_condition

find_objects –expand_to_bits

New Commands

create_vcm

create_upf_library

load_upf_library

use_upf_library

map_retention_clamp_cell

create_abstract_power_source

Legacy/Deprecated

set_isolation –applies_to_sink_clamp
 -applies_to_source_clamp

create_supply_net -reuse
 -domain

create_power_switch -domain

create_supply_port -domain

set_port_attribute
 –sink_off_clamp
 -source_off_clamp

create_upf2hdl_vct

create_hdl2upf_vct

set_retention_elements -transitive

set_retention –save_condition
 -restore_condition
 –retention_condition

Where to get the IEEE 1801-2024 Spec

• 1801-2024 spec is available from the IEEE GET program

• IEEE SA open repository
• Select examples and packages from the 1801-2024 specification

• Planned community space to provide comments, advice, additional examples

• Available at: https://opensource.ieee.org/upf

https://ieeexplore.ieee.org/browse/standards/get-program/page
https://opensource.ieee.org/upf

New feature for UPF 4.0: interconnect
between UPF supplies and arbitrary HDL types
Daniel Cross – Cadence Design Systems

Motivation for adding to the standard
• An increasing number of designs are mixed signal in nature and have significant

analog and mixed signal content

• Co-verification of analog and mixed signal design elements with purely digital

components has increased in importance

• Analog and digital portions of designs increasingly share power supplies

• Use of Real Number Modeling (RNM) to represent analog functions for verification

has proliferated

• Synchronization of analog and UPF representations of the power supply network has

become critical

New concepts

• VCM – Value Conversion Method
extends and enhances VCT (Value Conversion Table)

• Tunneling
allows analog connections to be made via UPF

• UPF Library
helps avoid name collisions between otherwise global objects

• Automatic VCM selection by nettype and data type
allows successive refinement by supporting multiple representations with a
single UPF

VCMs
• VCMs provide a richer and more flexible

mechanism to translate between UPF
supply nets and HDL
• Improved simple table conversions vs VCT
• Enable advanced conversions of more

complex types by using user defined
Modules and Functions

• Ability to contain a list of other VCMs to
enable automated type conversions

• VCTs are now legacy
• Their functionality is a subset of VCMs
• As legacy they continue to work but 1801

encourages migration

• Examples of each type provided at end
of this presentation

13

Syntax:
create_vcm vcm_name

And one of the following option sets:

• -table {{from_value to_value}*}
 -hdl_type {<vhdl | sv> [HDL_typename]}
 -conversion_direction <hdl2upf | upf2hdl>
 -field field_name

• -function hdl_package::function_name

• -model module_name
 -parameters {{param_name param_value }*}

• -vcms ext_vcm_list

Example Situation in which to use VCMs
14

UDN
xA1(LDO)

VDDA

UPF
VOUT VDD

xD1(Digital)

VDD

xD2(Digital)

VDDA

myVCM1

connect_supply_net VDDA -ports {xA1/VOUT xD1/VDD xD2/VDD} \

 -vcm myVCM1

Convert between a UDN
and a UPF supply net • In addition to single-bit

logic, the VCM allows
connecting UPF supply nets
to:
• integer
• enum
• real
• User-Defined Nettype

(UDN)
• UDN with struct
• record

• Only UPF supply nets (not
logic nets or supply sets)
can be connected with
these methods.

Tunneling

• Tunneling allows a connection between same type of HDL net to preserve
the full extent of that type
• Normal UPF conversions result in loss of information because the UPF supply type only

has an integer voltage and supply_state
• The HDL type may contain a richer set of values that the load HDL model may take

advantage of

Analog

source

HDL model

HDL UPF supply_net digital load

Analog load

HDL model

Connection made in

UPF but does not use

UPF supply net type

(“tunneling”)

HDL

Single VCM inserted at output

port of source instance

digital load

UPF

UPF

VCMs and HDL Tunneling Paper

16

continued

Tuesday Session 1
Low Power UPF
Paper 1127

Monterey Carmel
9 am

UPF Library
• The UPF library was introduced to provide a way to avoid name collisions

between VCM definitions, which are otherwise global in scope.
• Using a UPF library, a third-party design contribution (Intellectual Property or IP) can

define VCMs for use in simulating the IP, without risking name collisions with VCMs
defined for the SoC or other IPs.

• New commands which support UPF library use:

create_upf_library upf_library_name \
 -contents { \
 upf commands \
 }

use_upf_library upf_library_name

load_upf_library upf_library_file

17

Automatic Selection of VCM by net/data type
• Motivation:

• UPF supply nets may connect to multiple HDL types

• The –vcms option allows the specification of a list of VCM’s

• Tools can choose the matching VCM based on the HDL type and do the proper
conversion

create_vcm vcm_bundle \

 -vcms {sv_logic2upf sv_real2upf sv_udn2upf}

Commands and Option Changes
• New Commands and options

• create_vcm
• create_supply_net -tunneling
• connect_supply_net -vcm
• create_upf_library
• use_upf_library
• load_upf_library

• Legacy Commands and options
• The commands create_hdl2upf_vct and create_upf2hdl_vct are legacy.

• They can still be supported alongside VCMs by redirecting calls to these commands to
create_vcm, supplying the necessary –conversion_direction

• The –vct option in connect_supply_net is also legacy.
• Tools may continue to support –vct

Table VCM Examples
• Consider a SystemVerilog package with a UDN defined as follows:

package ldo_net_pkg;
typedef struct {
 real volts;
 real current;
} ldo_struct_t ;
nettype ldo_struct_t ldo_supply_net;
endpackage

• A VCM that maps values on a HDL port of type ldo_supply_net can be
declared as follows:

create_vcm LDONET2UPF \

-hdl_type {sv ldo_net_pkg::ldo_supply_net} \

-conversion_direction hdl2upf \

-field volts \

-table { \

 {{5.0 * } {OFF }} \

 {{1.0 5.0} {FULL_ON 1.1 }} \

 {{0.6 1.0} {PARTIAL_ON 0.9 }} \

 {{ * 0.6} {OFF }} \

 }

20

Function VCM Example
package myVCM_pkg;

 import UPF::*;

 import ldo_net_pkg::*;

 function automatic upfSupplyTypeT func_h2u_snap (ldo_struct_t hdl_in);

 upfSupplyTypeT upf_out;

 upf_out.voltage = 0;

 upf_out.state = UNDETERMINED;

 if (hdl_in.volts <= 0.2) begin

 upf_out.voltage = 0;

 upf_out.state = OFF;

 end

 else if ((hdl_in.volts > 0.2)

 && (hdl_in.volts <= 0.9)) begin

 upf_out.voltage = 0.9;

 upf_out.state = FULL_ON;

 end

 . . .

 return upf_out;

 endfunction

endpackage

21

Using the package in UPF
create_vcm LDONET2UPF_function \
 -function myVCM_pkg::func_h2u_snap

Model VCM Example
import UPF::*; import ldo_net_pkg::*;
module snap_volt_vcm #(
 //default parameter defs
 parameter ov_threshold = 5.0,
 parameter hi_snap_volts = 1.1,
 parameter hi_threshold = 1.0,
 parameter on_snap_volts = 0.9,
 parameter on_threshold = 0.2
) (
 input ldo_supply_net hdl_in,
 output upfSupplyTypeT upf_out
);

always @(hdl_in.volts)

 begin

 . . .

 end

endmodule

22

create_vcm LDONET2UPF_module \

 -model my_module_lib.snap_volt_vcm \

 -parameters { \

 {ov_threshold 5.0} \

 {hi_snap_volts 1.5} \

 {hi_threshold 1.4} \

 {on_snap_volts 1.0} \

 {on_threshold 0.5} }

Advantages of Functions over Modules

• Functions are less resource intensive.
• They exist for one event and then disappear

• Modules are instantiated in the netlist, and exist for the entire
simulation, occupying memory even when nothing happens to
them

• Functions can be imported from other languages (e.g. C++)
• Modules must be HDL

23

Advantages of Modules over Functions

• Modules can be easily parameterized
• One module description can be used as the basis for many VCMs (using

create_vcm –parameters)

• Modules can model time delay effects
• Since they are static objects, they can respond to stimuli over several event

times

• More complex behaviors can be modeled

24

List VCM Example

• You can include VCMs for both directions in a list, as long as the
ports you connect with it are input or output (but not inout).

• You can only include one VCM with a given HDL type and
direction in the list.

• All of the VCMs in the list have to be previously defined with a
create_vcm command.

• The list can be a mix of table VCMs, function VCMs, module VCMs,
or even other list VCMs.

• Use the name of the list VCM when you make UPF supply net
connections to HDL ports.

25

create_vcm vcm_bundle \

 -vcms {sv_logic2upf sv_real2upf sv_udn2upf}

Making Connections with VCMs
• Apply your VCMs to make connections between HDL ports and UPF supply

nets by using the connect_supply_net command with a new option:
 -vcm

• For example:
connect_supply_net vdd -ports {u1/vdd_1v0} -vcm vcm_bundle

• Some things to be aware of:
• Expect an error if the VCM you specify does not match the HDL type and port

direction you are connecting to. If you specify a list, then exactly one of the VCMs in
the list has to match.

• If any ports listed in –ports {} are UPF supply ports (and therefore do not need
conversion), -vcm will be ignored for those ports.

• You can also use connect_supply_net with –pg_type to connect to many
ports with the same pg_type.

26

Refinable Macros and Terminal
Boundaries in UPF 4.0: Empowering

Soft IPs of the Future

Refinable Macros in UPF 4.0

• Enabling Non-Intrusive Refinements in Bottom-up Verification Flows

• Presenter
• Amit Srivastava

• Agenda
• Why we need Refinable Macros

• How they differ from Soft Macros

• Marking IPs as Refinable Macro

• Refinable Macro in Action

Empowering Soft IPs(SIP) of the Future

Motivation: Challenges with SIPs in Bottom-
Up Verification
• Standalone UPF Verification

• Higher-Level Implementation
Requires Power Intent Updates

• Intrusive Methods Risk
Invalidating Power Intent

• Need a methodology
• Safe Changes

• No Re-verification

Intrusive Updates
Invalidates the

Standalone Validation

Why Soft Macros Fall Short for Bottom-Up
Verification
• Rigid Implementation

Boundaries
• Suitable for Bottom-Up

Implementation Flows

• No Room for Non-Intrusive
Refinements

• Forces Intrusive Edits and Re-
Validation

• Lacks System-Level
Optimization

SoC

Soft Macro

iso

Soft Macro.upf
constraint.upf

config.upf

impl.upf

Soft Macro

iso

Soft Macro.upf
constraint.upf

config.upf

impl.upf

STRICT
TERMINAL BOUNDARIES

Pre-Hardened outside SoC
No logic optimizations

Refinable Macros in UPF 4.0

• Ideal for Bottom-Up Verification

• Refinable Terminal Boundaries

• Non-Intrusive Power Intent
Updates

• Verification Integrity Preserved

• Enables System-Level
Optimization

SoC

Refinable Macro

SIP.upf
constraint.upf

config.upf

APR.impl.upf

Refinable Macro

SIP.upf
constraint.upf

config.upf

APR.impl.upf

iso

Marking IPs as Refinable Macros

• Simple UPF Attribute
• IP or External Marking

• Override to Soft Macro if Needed

• Non-Intrusive Terminal Boundary

• Retains IP Verification

Mark directly in IP UPF:

set_design_attributes -models . -is_refinable_macro true

Or mark externally:

set_design_attributes -models IP_Design -attribute {UPF_is_refinable_macro TRUE}

Mark IP as
Refinable Macro

Safe
Updates

Preserves
Verification

Implementation UPF
& load_upf -implementation
• Safe Refinements via Allowed

Commands and options
• UPF 4.0 defines allowed

commands

• -implementation Enforces
Correct-by-Construct UPF
• EDA Tools Enforce Compliance

• No Alteration of Original IP UPF

• Preserves Verification Integrity

SoC UPF

load_upf ip_impl.upf \

 -scope myIP \

 -implementation

ip_impl.upf

set_isolation PGD_to_AON \

 -domain PGD \

 -location parent

 -update

Practical Example: Refinable Macros in Action
ip.upf

set_design_attributes –models . \
-is_refinable_macro TRUE

create_supply_set ss_IP_AON
create_supply_set ss_IP_PGD

create_power_domain AON -elements {.}
create_power_domain PGD –elements {ip1_pgd_wrapper}

Isolates all outputs where different
supplies power source and sink
set_isolation PGD_to_AON -domain PGD \
 -isolation_supply_set ss_IP_AON \
 -applies_to outputs -source ss_IP_PGD \
 -diff_supply_only TRUE \
 -isolation_signal pwr_manager/iso_en_b \
 -isolation_sense low

ParIP.upf
create_power_domain par_AON -elements {.}
create_supply_set ss_SOC_AON
create_supply_set ss_SOC_PGD

load_upf ip.upf -scope ip1
load_upf ip_impl.upf -scope ip1 -implementation
associate_supply_set {ss_SOC_AON ip1/ss_IP_AON}
associate_supply_set {ss_SOC_AON ip1/ss_IP_PGD}

load_upf ip.upf -scope ip2
load_upf ip_impl.upf -scope ip2 -implementation
associate_supply_set {ss_SOC_AON ip2/ss_IP_AON}
associate_supply_set {ss_SOC_PGD ip2/ss_IP_PGD}

set_isolation PGD_to_AON \
 -domain PGD \
 -location parent
 -update

ip_impl.upf

SoC (ParIP.upf)

ip1 ip2

Implementation
updates only

AON and PGD
supplies are shorted
for one instance of

the IP

iso

Conclusion & Key Takeaways

• UPF 4.0 Bridges SIP Verification Gaps

• Refinable Macros Enable Non-Intrusive Updates

• Implementation UPF Ensures Correct-by-Construct

• Preserves Verification Integrity, Saves Time

• Join Our Paper Session

Retention Modeling in UPF 4.0

Future Proofing Retention in UPF 4.0

• Future Proofing Power Intent Specification through UPF 4.0 for
Evolving Advanced State Retention Strategies

• Primary Author
• Lakshmanan Balasubramanian

• Agenda
• Why retention semantics were updated

• What is new in UPF 4.0

• Examples enabled by new changes

Motivation

• Advances in state retention cell design have exposed limitations in
earlier versions of the UPF LRM

• Enhancements needed to model the more complex clock, setup,
retention relationships provided by these new technologies

• Improved modeling will catch issues early in the design cycle

• 4.0 improvements were designed to be forward looking and provide a
flexible platform that can adjust to future requirements

Retention Overview of changes
• Existing set_retention conditions were expanded and redefined to be

more accurate

• Ability to specify how set/reset will affect the behaviors

Earlier UPF set_retention

-restore_condition

-save_condition

-retention_condition

4.0 set_retention

-restore_event_condition

-save_event_condition

-retention_period_condition

-powerdown_period_condition

-async_set_reset_effect

4.0 new retention options
4.0 set_retention

-restore_event_condition gates the restore event from triggering the restore operation of the register. The
register is restored when the restore event occurs and the -restore_event_condition
is True.

-save_event_condition gates the save event, defining the save behavior of the register. The register contents
are saved when the save event occurs and the -save_event_condition is True.

-retention_period_condition -restore_period_condition also gates the restore operation. The restore operation
occurs continuously during the entire restore period. The restore_period_condition
shall be TRUE throughout the entire restore period;

-powerdown_period_condition defines the conditions under which the retained value is maintained when the
domain power is OFF. If the -powerdown_period_condition is specified, it shall
evaluate to TRUE the entire time that the domain’s primary power is OFF for the
value of the state element to be retained.

-async_set_reset_effect specifies how the set/reset signals affect the value of the retained element and the
output during the restore period (ignored, reset retained value and output, reset only
the output value)

Retention Waveform Example

• 4.0 clearly defines the periods of
the full retention cycle

• Each period can have an
independent set of requirements
relative to clock, reset, and other
design signals

• Overcomes limits and ambiguities
in previous versions

Async_set_reset_effect
ignored: does not change
retained value or output value

retained_value: changes
both the retained value and
output

output_value: only changes
the output, the saved value
propagates once the reset is
deasserted

Additional Changes for retention

• Improved definition of UPF_GENERIC CLOCK

• Allow UPF_GENERIC_CLOCK and UPF_GENERIC_ASYNC_SET_RESET
to be used in all conditions

• 9.7 simulation of retention section overhauled
• Greatly enhanced examples with detailed waveforms for most common

retention types

Agenda

• Introduction

• Interconnect between UPF supplies and arbitrary HDL types

• Improvements in successive refinement and refinable macros

• Overview of Retention Changes

• Virtual Supply and Virtual Equivalence

• General Updates

• Beyond 4.0

• Q/A

Virtual Supplies & Equivalence

• Motivation
• Pre-4.0, no way to model a supply net that did not physically exist in the design

• No way to create driver/receiver supply to model external supplies

• Required use of power models to create internal supplies for macros and use them in power
states and strategy filters

• Many tools already have ad-hoc methods to address these

• Solution
• Define virtual supply nets, ports and supply_sets

• Supply nets/ports/sets that are virtual have no physical implementation

• Can be used in add power state, connect_supply_net, source/sink filtering, etc

• Have the same simulation semantics as non-virtual supplies

• New concept of virtually equivalent – general concept is the same as electrically equivalent
but without interchangeability

Virtual Supplies, Supply Sets and Ports
• Virtual supplies allow

• designers to describe supplies that are not physically connected to the block
• virtual connections between internal supplies of macros to setup equivalence
• specification of driver and receiver supply of ports and macro pins to enable –source/-sink

filtering
• power states to be easily defined for cases where there is no physical supply net

• Virtual supply restrictions
• They cannot be used to power any active logic in the design:
• Cannot be a primary supply of a domain, can not be used as the supply for any strategy
• They cannot be written out in the physical design outputs
• Connection of supply subnets does not create interchangeability

• Syntax changes
create_supply_net –virtual

create_supply_port –virtual

create_supply_set -virtual

Case1: Virtual Supply used to model
functionally equivalent supplies

• Motivation: Simplify the power state and LS/ISO
strategies for macros

• Methodology
• The internal supply (VDDI) pins are connected with a virtual

supply net making them virtually equivalent
• Allows creation of virtual supply sets that can be used for

power states and –source/-sink iso/LS rules
• Implementation tools are forbidden from using a virtual net

to power logic
• Implementation tools will not write these virtual

connections into the output Verilog

Virtual Supply UPF code

An internal pin, virtual connection
- no physical connection

Create the virtual supply net and virtual supply set

create_supply_net VDDI_virtual –virtual –resolve parallel

create_supply_set SS1_virtual -function {power VDDI_virtual} –function {ground VSS} -virtual

#connect the virtual supply net to each memory’s internal supply pin VVDDI

connect_supply_net VDDI_virtual –ports { MEM1/VDDI …. MEMN/VDDI}

A single supply level power state instead of one per MEM block

add_power_state SS1_virtual –supply \

-state {OFF –supply_expr {power == OFF}} \

-state {ON -supply_expr { power == {FULL_ON} && ground == FULL_ON}}

The logic expression has a single term, instead of one term per MEM block

add_power_state PD1 –domain –state {ON –logic_expr {SS1_virtual == ON}}

A single set_isolation covers any output driven by any of the connected MEM blocks

set_isolation ISO1 –domain PD1 –source SS1_virtual –applies_to outputs

Virtual supplies can have states
specified in same way as physical

Virtual supplies can be used as
source/sink for ISO/LS strategies

Case2 : Virtual supply to model external supplies

create_supply_net VDD2_virtual -virtual

create_supply_set SS2_virtual –virtual

 –function {power VDD2_virtual}

 –function {ground VSS}

set_port_attribute –ports B

 –driver_supply SS2_virtual

set_isolation iso1 –domain PD1

 –source SS2_virtual

 –applies_to inputs

VDD2 VSS
VDD

PD2 (SS2)

B

PD1IP1

VSS

B uses SS2_virtual as its driver supply
 when IP1 is run standalone

Virtual Equivalence
• Prior to 4.0, any supply nets connected to each other were electrically equivalent

• Subnet equivalent – any drivers on any of the connected supply nets had to be treated as
one net and had to be resolved in simulation

• The nets were interchangeable: The nets could be used interchangeably including in
physical design.

• Virtual Nets are not real connections, they are not interchangeable

• Virtual Equivalence
• Keeps the subnet equivalence for simulation, but does not include interchangeability

• Affects transitive properties
• A(real) connects to B(real), and B(real) connects to C(real); Then A and C are electrically equiv

• A(real) connects to B(virtual) and B(virtual) connects to C(real); then A and C are only virtually equiv
and are non-interchangeable

Understanding Equivalence

Virtually Equiv
Through connectivity

Electrically Equiv
Through connectivity

set_equivalent –function_only
-interchangeable FALSE

set_equivalent –function_only
-interchangeable TRUE

set_equivalent

Functional Equivalence

Subnet Equivalence

Interchangeability

Agenda

• Introduction

• Interconnect between UPF supplies and arbitrary HDL types

• Improvements in successive refinement and refinable macros

• Overview of Retention Changes

• Virtual Supply and Virtual Equivalence

• General Updates

• Beyond 4.0

• Q/A

Details on select topics

• Support for set/reset on Latch Isolation

• map_retention_clamp_cell

• find_objects –expand_to_bits

• Precedence Updates

• set_port_attributes –feedthrough

• Naming Updates

Support for set/reset on Latch Isolation

• Support for set/reset on Latch based isolation
set_isolation

–async_set_reset {net_name <high|low>} #specify cntrl signal

-async_clamp_value <0|1> #specify set or reset

• Create a new port attribute to specify async_clamp_value
• UPF_async_clamp_value

• set_port_attributes –async_clamp_value <0|1>
set_isolation ISO -domain

-isolation_signal iso_ctrl

-isolation_sense high

-clamp_value latch

-async_set_reset { isosetn low}

-async_clamp_value 1

. . .

map_retention_clamp_cell

• For “zero-pin” state retention a clamp cell is
automatically inserted on the clock/reset pins

• The map_retention_clamp_cell allows the
specification of what cell to use to implement that
clamp.

• Example:

CK

RST

Data
ICG-ISO P

S

RETN

RESET

CLK

set_retention RET1 –domain PD1 ...

 –save_signal {RETN high} -restore_signal {RETN low}

map_retention_cell RET1 –domain PD1 –lib_cells {SCL9T_ZPR_X2}

map_retention_clamp_cell {RET1} –domain PD1

 –clock_clamp_lib_cells {SCL9T_ISOT1_X1} # green isolation in diagram

 -async_clamp_lib_cells {SCL9T_ISOT2_X1} # orange isolation in diagram

find_objects –expand_to_bits
• find_objects can return a single object for a bus or a list of individual bits

• This was possible before by using patterns like “xyz\[*\]” to return a list of individual bits

• In 4.0, this process has been made easier by adding an “-expand_to_bits”
option
• When set true, the individual bits will always be returned
• When false (or not set), the pre-4.0 behavior will apply

• Whether the individual bits are returned or the full bus is returned can affect the
precedence of this list in other commands
• Example : set_isolation ISO1 –elements [find_objects ….]
• In the elements list, bits will have higher precedence than the full bus

Find_objects . –object_type port Return Value

-pattern {pmda\[*\]} {pmda[1] pmda[0]}

-pattern {pmda\[*\]} -expand_to_bits {pmda[1][0] pmda[1][1] pmda[0][1] pmda[0][0]}

Precedence Updates
• set_retention

• set_retention with –no_retention now has precedence over set_retention without –
no_retention

• create_power_domain

• Command that applies to all design elements of instances included transitively. If two commands specify
different ancestors of a design element, the command with the lower ancestor applies.

• set_port_attributes –driver_supply/-receiver_supply

• If after applying the precedence rules above, the predefined port attributes UPF_receiver_supply or
UPF_driver_supply are defined on a given port using both hierarchical and non-hierarchical names then the
hierarchical name shall take precedence.

• Composite types
• When determining precedence, composite data types are treated as a multibit signal. A record field or array

index of a composite data type referred to explicitly by name is also treated as a part of the multibit signal.

• set_design_attributes -is_hard_macro|-is_soft_macro|-
is_refinable_macro
• If the macro has multiple -is_*_macro attributes set, then -is_hard_macro has highest precedence,

followed by -is_soft_macro

set_port_attributes -feedthrough

• In 3.1, the semantics around multiple feedthrough groups was
unclear.

• In 4.0:
• set_port_attributes –ports {port_list} –feedthrough feedthrough_name

• All ports connected with the UPF_feedthrough attribute set to the
same feedthrough name, are defined as connected

• Example:
• The following code defines two separate feedthrough groups: X that includes a, b

and c, and Y that only contains e and f.
set_port_attributes –ports {a b} –feedthrough X

set_port_attributes –ports {c} –feedthrough X

set_port_attributes –ports {e f} –feedthrough Y

Naming Updates

• Clarify what character should be used in UPF to specify the generate
block delimiter
• In the design flow generate blocks are unique, for simulation they create a hierarchy but for

implementation they don’t. The naming style also can differ based on tools settings.

• In 4.0, the LRM was updated to define a single style that should be used in the UPF

• generate block delimiter character: A special character used in composing names containing generate
block labels. The generate block delimiter character is a dot (.).

• New Library naming
• When referencing a model in a command argument, its name may be prefixed by its library name

followed by a dot ("."). This limits the effect of a command to the particular version of that model
compiled into the specified library. A model name specified with the "<library>.<model>" syntax is
considered a simple name (5.3.3.2)

Beyond 1801-2024
• 1801-2024 major features were the response to new technologies

and design methodologies

• Beyond 1801-2024
• Continued innovation on mixed signal design and interfacing

• Enable supply networks to carry information about power generation and consumption

• Bi-directional supply ports

• Features to improve static checking of designs with mixed analog/digital components

• Power modeling in the context of mixed signal integrations

• Information model improvements beyond SV and VHDL

• Improvements to support new technology cells

• Ease of use/Ease of specification improvements

Questions

	Slide 1: Introduction of IEEE 1801-2024 (UPF4.0) improvements for the specification and verification of low-power
	Slide 2: Agenda
	Slide 3: Introductions/Acknowledgements
	Slide 4: Unified Power Format (UPF)
	Slide 5: Evolution of the Standard
	Slide 6: UPF 4.0 – Major Goals
	Slide 7: Summary of Change Topics
	Slide 8: Command/Option Change Summary
	Slide 9: Where to get the IEEE 1801-2024 Spec
	Slide 10: New feature for UPF 4.0: interconnect between UPF supplies and arbitrary HDL types
	Slide 11: Motivation for adding to the standard
	Slide 12: New concepts
	Slide 13: VCMs
	Slide 14: Example Situation in which to use VCMs
	Slide 15: Tunneling
	Slide 16: VCMs and HDL Tunneling Paper
	Slide 17: UPF Library
	Slide 18: Automatic Selection of VCM by net/data type
	Slide 19: Commands and Option Changes
	Slide 20: Table VCM Examples
	Slide 21: Function VCM Example
	Slide 22: Model VCM Example
	Slide 23: Advantages of Functions over Modules
	Slide 24: Advantages of Modules over Functions
	Slide 25: List VCM Example
	Slide 26: Making Connections with VCMs
	Slide 27: Refinable Macros and Terminal Boundaries in UPF 4.0: Empowering Soft IPs of the Future
	Slide 28: Refinable Macros in UPF 4.0
	Slide 29: Motivation: Challenges with SIPs in Bottom-Up Verification
	Slide 30: Why Soft Macros Fall Short for Bottom-Up Verification
	Slide 31: Refinable Macros in UPF 4.0
	Slide 32: Marking IPs as Refinable Macros
	Slide 33: Implementation UPF & load_upf -implementation
	Slide 34: Practical Example: Refinable Macros in Action
	Slide 35: Conclusion & Key Takeaways
	Slide 36: Retention Modeling in UPF 4.0
	Slide 37: Future Proofing Retention in UPF 4.0
	Slide 38: Motivation
	Slide 39: Retention Overview of changes
	Slide 40: 4.0 new retention options
	Slide 41: Retention Waveform Example
	Slide 42: Async_set_reset_effect
	Slide 43: Additional Changes for retention
	Slide 44: Agenda
	Slide 45: Virtual Supplies & Equivalence
	Slide 46: Virtual Supplies, Supply Sets and Ports
	Slide 47: Case1: Virtual Supply used to model functionally equivalent supplies
	Slide 48: Virtual Supply UPF code
	Slide 49: Case2 : Virtual supply to model external supplies
	Slide 50: Virtual Equivalence
	Slide 51: Understanding Equivalence
	Slide 52: Agenda
	Slide 53: Details on select topics
	Slide 54: Support for set/reset on Latch Isolation
	Slide 55: map_retention_clamp_cell
	Slide 56: find_objects –expand_to_bits
	Slide 57: Precedence Updates
	Slide 58: set_port_attributes -feedthrough
	Slide 59: Naming Updates
	Slide 60: Beyond 1801-2024
	Slide 61: Questions

